留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

密闭空间内氢气和二氧化碳甲醇化系统的非均相模型及反应特性

熊凯 尹永利 曹勇 刘晓天 杨才华

熊凯, 尹永利, 曹勇, 刘晓天, 杨才华. 密闭空间内氢气和二氧化碳甲醇化系统的非均相模型及反应特性[J]. 空间科学学报, 2022, 42(3): 437-447. doi: 10.11728/cjss2022.03.210123036
引用本文: 熊凯, 尹永利, 曹勇, 刘晓天, 杨才华. 密闭空间内氢气和二氧化碳甲醇化系统的非均相模型及反应特性[J]. 空间科学学报, 2022, 42(3): 437-447. doi: 10.11728/cjss2022.03.210123036
XIONG Kai, YIN Yongli, CAO Yong, LIU Xiaotian, YANG Caihua. Numerical Study on Reaction Characteristics of Carbon Dioxide Hydrogenation to Methanol in Habitable Confined Space Based on Heterogeneous Models (in Chinese). Chinese Journal of Space Science, 2022, 42(3): 437-447. DOI: 10.11728/cjss2022.03.210123036
Citation: XIONG Kai, YIN Yongli, CAO Yong, LIU Xiaotian, YANG Caihua. Numerical Study on Reaction Characteristics of Carbon Dioxide Hydrogenation to Methanol in Habitable Confined Space Based on Heterogeneous Models (in Chinese). Chinese Journal of Space Science, 2022, 42(3): 437-447. DOI: 10.11728/cjss2022.03.210123036

密闭空间内氢气和二氧化碳甲醇化系统的非均相模型及反应特性

doi: 10.11728/cjss2022.03.210123036
详细信息
    作者简介:

    熊凯:E-mail:xiong_k@126.com

  • 中图分类号: V524

Numerical Study on Reaction Characteristics of Carbon Dioxide Hydrogenation to Methanol in Habitable Confined Space Based on Heterogeneous Models

  • 摘要: 在载人密闭空间内通过电解水方式为乘员供氧会产生副产物氢气(H2)。此外,乘员还呼出二氧化碳(CO2)。将H2和CO2催化合成甲醇(CH3OH)是消除载人密闭空间内富余H2和CO2的最优方式之一。对其开展反应过程建模及反应特性研究有助于进行反应过程的控制,更好地维持载人密闭空间内的大气平衡。本文采用微元法建立了H2和CO2催化合成甲醇的物料计算模型和温度一维非均相模型,研究了不同反应压力、冷却介质温度以及入口反应气体中CO2与CO比值等反应条件下的反应特性变化规律。结果显示,反应压力的增加、冷却介质的温升以及入口气体中CO2与CO比值的减小均能促进各反应速率增加,进而使得H2和CO2消除量增加、甲醇合成率上升以及催化剂和反应气体最高温度上升。在保证反应速率增加且催化剂最高温度不超过合理反应温度区间的最大值573.15 K时需维持反应压力不大于8 MPa,冷却介质温度不高于538.15 K以及CO2与CO比值不小于1。

     

  • 图  1  氢气二氧化碳合成甲醇反应流程

    Figure  1.  Flow chart of carbon dioxide hydrogenation to methanol system

    图  2  反应管小微元建模

    Figure  2.  Modeling schematic diagram of reaction tube element

    图  3  模型计算流程

    Figure  3.  Calculation flow chart of models

    图  4  不同反应压力对单管反应过程的影响

    Figure  4.  Effect of pressure on the reaction

    图  5  不同冷却介质温度对反应过程的影响

    Figure  5.  Effect of cooling medium temperature on the reaction

    图  6  CO2与CO比值对反应过程的影响

    Figure  6.  Effect of ratio of carbon dioxide to carbon monoxide on the reaction

    表  1  各个物料成分的反应速率

    Table  1.   Reaction rate of each material component

    ${r'_{{{\text{H}}_{\text{2}}}}}$${r'_{{\text{C}}{{\text{O}}_{\text{2}}}}}$${r'_{{\text{CO}}}}$${r'_{{\text{C}}{{\text{H}}_{\text{3}}}{\text{OH}}}}$${r'_{{{\text{H}}_{\text{2}}}{\text{O}}}}$
    $-3{r_1}\left( x \right)-{r_2}\left( x \right)-{r_3}\left( x \right)$$ - {r_1}\left( x \right) - {r_2}\left( x \right)$${r_2}\left( x \right)-{r_3}\left( x \right)$${r_1}\left( x \right){\text{ + }}{r_3}\left( x \right)$${r_2}\left( x \right){\text{ + }}{r_3}\left( x \right)$
    下载: 导出CSV

    表  2  H2和CO2合成甲醇反应工作参数

    Table  2.   Working parameter sheet of carbon dioxide hydrogenation to methanol

    ParameterValue
    Reaction tube diameter $ {d_{\text{t}}}/{\rm{m}} $0.011
    Reaction tube length $ L /{\rm{m}}$7
    Porosity $ \varepsilon $0.3
    Catalyst density $ {\rho _{\text{c}}}/({\rm{kg}} \cdot {\rm{m}}^{-3}) $1770
    Inlet gas temperature/K493.15
    Space velocity/h–13600
    下载: 导出CSV

    表  3  H2和CO2合成甲醇反应仿真计算工况设计

    Table  3.   Working condition arrangement of carbon dioxide hydrogenation to methanol

    No.Reaction pressure/MPaCoolant temperature/KR(CO2/CO)
    15,6,7,8523.1510
    25493.15,508.15,523.15,538.1510
    35523.1510,3,1
    下载: 导出CSV
  • [1] 汤兰祥, 高峰, 邓一兵, 等. 中国载人航天器环境控制与生命保障技术研究[J]. 航天医学与医学工程, 2008, 21(3): 167-174

    TANG Lanxiang, GAO Feng, DENG Yibing, et al. Research on environmental control and life support system (ECLSS) of China’s manned spacecraft[J]. Space Medicine & Medical Engineering, 2008, 21(3): 167-174
    [2] ERICKSON R J, HOWE J, KULP G W, et al. International space station united states orbital segment oxygen generation system on-orbit operational experience[J]. SAE International Journal of Aerospace, 2008, 1(1): 15-24
    [3] CICHAN T, BAILEY S A, ANTONELLI T, et al. Mars base camp: an architecture for sending humans to mars[J]. New Space, 2017, 5(4): 203-218
    [4] 李俊荣, 尹永利, 周抗寒, 等. 空间站电解制氧技术研究进展[J]. 航天医学与医学工程, 2013, 26(3): 215-220

    LI Junrong, YIN Yongli, ZHOU Kanghan, et al. Progress of oxygen generation technology by water electrolysis in space station[J]. Space Medicine & Medical Engineering, 2013, 26(3): 215-220
    [5] 郑东欢, 李玉文, 陈兆波, 等. 水下航行器舱室内CO2的去除及O2再生工艺系统设计[J]. 环境工程学报, 2009, 3(1): 137-142

    ZHENG Donghuan, LI Yuwen, CHEN Zhaobo, et al. Technical system design of exhaust gas disposal and oxygen regeneration in cabin of aircraft ocean-below[J]. Chinese Journal of Environmental Engineering, 2009, 3(1): 137-142
    [6] 李军, 艾尚坤, 周抗寒. 空间站Sabatier CO2还原装置实验研究[J]. 航天医学与医学工程, 1999, 12(2): 121-124

    LI Jun, AI Shangkun, ZHOU Kanghan. An experimental study of the Sabatier CO2 reduction subsystem for space station[J]. Space Medicine & Medical Engineering, 1999, 12(2): 121-124
    [7] LEONZIO G, ZONDERVAN E, FOSCOLO P U. Methanol production by CO2 hydrogenation: analysis and simulation of reactor performance[J]. International Journal of Hydrogen Energy, 2019, 44(16): 7915-7933
    [8] WANG G, MAO D S, GUO X M, et al. Enhanced performance of the CuO-ZnO-ZrO2 catalyst for CO2 hydrogenation to methanol by WO3 modification[J]. Applied Surface Science, 2018, 456: 403-409
    [9] XIAO J, MAO D S, WANG G, et al. CO2 hydrogenation to methanol over CuO-ZnO-TiO2-ZrO2 catalyst prepared by a facile solid-state route: the significant influence of assistant complexing agents[J]. International Journal of Hydrogen Energy, 2019, 44(29): 14831-14841
    [10] SEIDEL C, JÖRKE A, VOLLBRECHT B, et al. Kinetic modeling of methanol synthesis from renewable resources[J]. Chemical Engineering Science, 2018, 175: 130-138
    [11] GRAAF G H, STAMHUIS E J, BEENACKERS A A C M. Kinetics of low-pressure methanol synthesis[J]. Chemical Engineering Science, 1988, 43(12): 3185-3195
    [12] MANENTI F, CIERI S, RESTELLI M. Considerations on the steady-state modeling of methanol synthesis fixed-bed reactor[J]. Chemical Engineering Science, 2011, 66(2): 152-162
    [13] SHAHROKHI M, BAGHMISHEH G R. Modeling, simulation and control of a methanol synthesis fixed-bed reactor[J]. Chemical Engineering Science, 2005, 60(15): 4275-4286
    [14] KISS A A, PRAGT J J, VOS H J, et al. Novel efficient process for methanol synthesis by CO2 hydrogenation[J]. Chemical Engineering Journal, 2016, 284: 260-269
    [15] DOS SANTOS R O, DE SOUSASANTOS L, PRATA D M. Simulation and optimization of a methanol synthesis process from different biogas sources[J]. Journal of Cleaner Production, 2018, 186: 821-830
    [16] BATHE K J, WILSON E L. Stability and accuracy analysis of direct integration methods[J]. Earthquake Engineering & Structural Dynamics, 1972, 1(3): 283-291
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  175
  • HTML全文浏览量:  57
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-18
  • 录用日期:  2021-08-06
  • 修回日期:  2022-03-14
  • 网络出版日期:  2022-05-25

目录

    /

    返回文章
    返回