留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全球海表流场多尺度结构观测卫星计划

杜岩 董晓龙 蒋兴伟 张玉红 朱迪 王闵杨 吴炜 王祥鹏 赵章喆 徐星欧 唐世林 经志友 李毅能 陈琨 陈雯

杜岩, 董晓龙, 蒋兴伟, 张玉红, 朱迪, 王闵杨, 吴炜, 王祥鹏, 赵章喆, 徐星欧, 唐世林, 经志友, 李毅能, 陈琨, 陈雯. 全球海表流场多尺度结构观测卫星计划[J]. 空间科学学报, 2022, 42(5): 849-861. doi: 10.11728/cjss2022.05.2022-0047
引用本文: 杜岩, 董晓龙, 蒋兴伟, 张玉红, 朱迪, 王闵杨, 吴炜, 王祥鹏, 赵章喆, 徐星欧, 唐世林, 经志友, 李毅能, 陈琨, 陈雯. 全球海表流场多尺度结构观测卫星计划[J]. 空间科学学报, 2022, 42(5): 849-861. doi: 10.11728/cjss2022.05.2022-0047
DU Yan, DONG Xiaolong, JIANG Xingwei, ZHANG Yuhong, ZHU Di, WANG Minyang, WU Wei, WANG Xiangpeng, ZHAO Zhangzhe, XU Xing’ou, TANG Shilin, JING Zhiyou, LI Yineng, CHEN Kun, CHEN Wen. Ocean Surface Current Multiscale Observation Mission (in Chinese). Chinese Journal of Space Science, 2022, 42(5): 849-861 doi: 10.11728/cjss2022.05.2022-0047
Citation: DU Yan, DONG Xiaolong, JIANG Xingwei, ZHANG Yuhong, ZHU Di, WANG Minyang, WU Wei, WANG Xiangpeng, ZHAO Zhangzhe, XU Xing’ou, TANG Shilin, JING Zhiyou, LI Yineng, CHEN Kun, CHEN Wen. Ocean Surface Current Multiscale Observation Mission (in Chinese). Chinese Journal of Space Science, 2022, 42(5): 849-861 doi: 10.11728/cjss2022.05.2022-0047

全球海表流场多尺度结构观测卫星计划

doi: 10.11728/cjss2022.05.2022-0047
基金项目: 中国科学院空间科学战略性先导科技专项(XDA15020901)和国家自然科学基金项目(41830538)共同资助
详细信息
    通讯作者:

    杜岩,E-mail:duyan@scsio.ac.cn

    董晓龙,E-mail:dongxiaolong@mirslab.cn

  • 中图分类号: P731

Ocean Surface Current Multiscale Observation Mission

  • 摘要: 全球海表流场多尺度结构观测卫星计划(Ocean Surface Current multiscale Observation Mission, OSCOM)首次提出海表流场、海面风场和海浪谱(简称 “流–风–浪”)一体化探测的多普勒散射计(Doppler Scatterometer, DOPS)测量原理和系统体制。OSCOM采用Ka-Ku双频多波束圆锥扫描体制的真实孔径雷达,将实现超过1000 km观测刈幅、公里级分辨率的“流–风–浪”一体化卫星直接观测。OSCOM将突破海洋亚中尺度非平衡态动力学、海洋多尺度相互作用、海气耦合的研究瓶颈,支撑实现海洋系统科学、气候变化等理论研究的重大突破。未来,应用OSCOM海表流速观测的模式改进,将奠定海洋非平衡态过程数值模拟、同化和预报的动力学基础,实现海洋和海气耦合模式的重大改进。通过与多源数据融合,OSCOM海流观测的应用将为海洋生物地球化学循环、碳收支研究和国家重大任务提供支撑。OSCOM科学卫星的实施对于我国地球系统科学和卫星对地观测重大应用的突破有至关重要的意义,有望带动我国应用卫星的发展从追赶、并行走向领跑。

     

  • 图  1  海洋多尺度动力过程示意(改自文献[13])。气候变化为海平面变化趋势,大尺度环流和中尺度涡中的填色为大洋环流模式数据的海表流速,箭头为海表流场,亚中尺度数据来自高分六号卫星

    Figure  1.  Schematic diagram of multiscale ocean dynamics (updated from Ref. [13]). Climate change is the sea level trend. Large-scale circulation and mesoscale eddy filled with surface current speed from model reanalysis data. Arrows are the currents, and the sub-mesoscale data are from the GF-6 satellite

    图  2  OSCOM示意。海洋大尺度和中尺度填色为大洋环流模式数据的海表流速,大尺度中的箭头为海面风场,中尺度中的箭头为海表流场,亚中尺度数据来自高分六号卫星

    Figure  2.  Schematic diagram of OSCOM, large-scale and mesoscale oceanographic data are filled with surface current speed from model reanalysis data, arrows in large scale are surface winds and arrows in mesoscale are surface currents, sub-mesoscale data are from the GF-6 satellite

    图  3  有效载荷与数据及其对科学目标的贡献

    Figure  3.  Payloads, data products, and their contribution to scientific objectives

    图  4  多普勒散射计海面观测几何

    Figure  4.  Doppler scatterometer observing strategy

    表  1  多普勒海洋学卫星任务计划对比

    Table  1.   Comparison of Doppler oceanography satellite mission plan

    任务OSCOM中国SEASTAR欧洲WaCM美国SKIM欧洲Harmony欧洲
    目标 全球海表“流–风–浪”一体化观测 沿海、陆架和极地海域的亚中尺度过程 全球海洋表层流–风场同步观测 全球赤道至高纬度中尺度表层海流/浪观测 全球冰、固体地球和海洋表面的动态形变观测
    观测变量 海表面全流场、海浪谱、风矢量 海表面全流场、风矢量、海浪谱 海表面全流场、风矢量 海表面全流场、海浪 海表面全流场
    载荷 Ku+Ka双频Doppler散射计 顺轨干涉SAR(大天线) Ka波段Doppler散射计 Ka波段Doppler散射计 C波段SAR(大天线)
    分辨率/km 5(流场) 1 5 30 1~4
    探测精度/(m·s–1 0.1 (流速) 0.25 0.15
    幅宽/km >1000 320 1800 320
    下载: 导出CSV

    表  2  OSCOM卫星有效载荷DOPS配置方案

    Table  2.   DOPS configuration scheme of OSCOM satellite payload

    参数测量要素关键技术指标备注
    双波段:Ku,Ka
    入射角:46°~49°
    极化方式:
    Ka波段 VV
    Ku波段 HH,VV
    海表流场(Ocean Surface Current,
    OSC)
    分辨率:
    5 km(OSC,OSVW)
    10 km (OSWS)
    OSVW和OSWS为OSC反演提供关键辅助信息
    海面风场(Ocean , Surface Vector Wind, OSVW) 刈幅:>1000 km
    海浪谱(Ocean Surface Wave Spectrum,OSWS) 测量精度:
    0.1 m·s–1(OSC)
    1.5 m·s–1(OSVW)
    波长精度≤15%(海浪谱)
    方向精度≤15°(OSC,OSVW,OSWS)
    下载: 导出CSV
  • [1] CHEN R, FLIERL G R, WUNSCH C. A description of local and nonlocal eddy–mean flow interaction in a global eddy-permitting state estimate[J]. Journal of Physical Oceanography, 2014, 44(9): 2336-2352 doi: 10.1175/JPO-D-14-0009.1
    [2] FERRARI R, WUNSCH C. Ocean circulation kinetic energy: reservoirs, sources, and sinks[J]. Annual Review of Fluid Mechanics, 2009, 41: 253-282 doi: 10.1146/annurev.fluid.40.111406.102139
    [3] DOHAN K, MAXIMENKO N. Monitoring ocean currents with satellite sensors[J]. Oceanography, 2010, 23(4): 94 doi: 10.5670/oceanog.2010.08
    [4] DOHAN K. Ocean surface currents from satellite data[J]. Journal of Geophysical Research: Oceans, 2017, 122(4): 2647-2651 doi: 10.1002/2017JC012961
    [5] LEE T, HAKKINEN S, KELLY K, et al. Satellite observations of ocean circulation changes associated with climate variability[J]. Oceanography, 2010, 23(4): 70-81 doi: 10.5670/oceanog.2010.06
    [6] LEGECKIS R, BROWN C W, BONJEAN F, et al. The influence of tropical instability waves on phytoplankton blooms in the wake of the Marquesas Islands during 1998 and on the currents observed during the drift of the Kon-Tiki in 1947[J]. Geophysical Research Letters, 2004, 31(23): L23307
    [7] YODER J A, DONEY S C, SIEGEL D A, et al. Study of marine ecosystems and biogeochemistry now and in the future: examples of the unique contributions from space[J]. Oceanography, 2010, 23(4): 104-117 doi: 10.5670/oceanog.2010.09
    [8] BOCCALETTI G, FERRARI R, ADCROFT A, et al. The vertical structure of ocean heat transport[J]. Geophysical Research Letters, 2005, 32(10): L10603 doi: 10.1029/2005GL022474
    [9] FREEMAN A, ZLOTNICKI V, LIU T, et al. Ocean measurements from space in 2025[J]. Oceanography, 2010, 23(4): 144-161 doi: 10.5670/oceanog.2010.12
    [10] TALLEY L D, PICKARD G L, EMERY W J, et al. Descriptive Physical Oceanography: An Introduction[M]. 6th ed. Boston: Academic Press, 2011
    [11] KLEIN P, LAPEYRE G, SIEGELMAN L, et al. Ocean-scale interactions from space[J]. Earth and Space Science, 2019, 6(5): 795-817 doi: 10.1029/2018EA000492
    [12] MCWILLIAMS J C. Submesoscale currents in the ocean[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2016, 472(2189): 20160117 doi: 10.1098/rspa.2016.0117
    [13] CHELTON D B. Report of the High-Resolution Ocean Topography Science Working Group Meeting[R]. Corvallis: Oregon State University, 2001
    [14] MUNK W H. On the wind-driven ocean circulation[J]. Journal of the Atmospheric Sciences, 1950, 7(2): 80-93
    [15] STOMMEL H. The westward intensification of wind-driven ocean currents[J]. Eos, Transactions American Geophysical Union, 1948, 29(2): 202-206 doi: 10.1029/TR029i002p00202
    [16] SCHMITZ JR W J. On the World Ocean Circulation. Volume 1. Some Global Features/North Atlantic Circulation[R]. Woods Hole: Woods Hole Oceanographic Institution, 1996
    [17] SPARROW M, CHAPMAN P, GOULD J. The World Ocean Circulation Experiment (WOCE) Hydrographic Atlas Series (4 volumes). International WOCE Project Office, Southampton, United Kingdom, 2005-2006
    [18] LUMPKIN R, ÖZGÖKMEN T, CENTURIONI L. Advances in the application of surface drifters[J]. Annual Review of Marine Science, 2017, 9: 59-81 doi: 10.1146/annurev-marine-010816-060641
    [19] NIILER P P, MAXIMENKO N A, MCWILLIAMS J C. Dynamically balanced absolute sea level of the global ocean derived from near-surface velocity observations[J]. Geophysical Research Letters, 2003, 30(22): 2164
    [20] RIO M H, HERNANDEZ F. High-frequency response of wind-driven currents measured by drifting buoys and altimetry over the world ocean[J]. Journal of Geophysical Research: Oceans, 2003, 108(C8): 3283 doi: 10.1029/2002JC001655
    [21] PARK J J, KIM K, KING B A, et al. An advanced method to estimate deep currents from profiling floats[J]. Journal of Atmospheric and Oceanic Technology, 2005, 22(8): 1294-1304 doi: 10.1175/JTECH1748.1
    [22] ROEMMICH D, GILSON J. The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program[J]. Progress in Oceanography, 2009, 82(2): 81-100 doi: 10.1016/j.pocean.2009.03.004
    [23] CHAPRON B, COLLARD F, ARDHUIN F. Direct measurements of ocean surface velocity from space: interpretation and validation[J]. Journal of Geophysical Research: Oceans, 2005, 110(C7): C07008
    [24] EMERY W J, BALDWIN D, MATTHEWS D. Maximum cross correlation automatic satellite image navigation and attitude corrections for open-ocean image navigation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(1): 33-42 doi: 10.1109/TGRS.2002.808061
    [25] FU L L. Pathways of eddies in the South Atlantic Ocean revealed from satellite altimeter observations[J]. Geophysical Research Letters, 2006, 33(14): L14610 doi: 10.1029/2006GL026245
    [26] LIU A K, HSU M K. Deriving ocean surface drift using multiple SAR sensors[J]. Remote Sensing, 2009, 1(3): 266 doi: 10.3390/rs1030266
    [27] FU L L, CHRISTENSEN E J, YAMARONE JR C A, et al. TOPEX/POSEIDON mission overview[J]. Journal of Geophysical Research: Oceans, 1994, 99(C12): 24369-24381 doi: 10.1029/94JC01761
    [28] BONJEAN F, LAGERLOEF G S E. Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean[J]. Journal of Physical Oceanography, 2002, 32(10): 2938-2954 doi: 10.1175/1520-0485(2002)032<2938:DMAAOT>2.0.CO;2
    [29] CHELTON D B, SCHLAX M G, SAMELSON R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2): 167-216 doi: 10.1016/j.pocean.2011.01.002
    [30] DUCET N, LE TRAON P Y, REVERDIN G. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2[J]. Journal of Geophysical Research: Oceans, 2000, 105(C8): 19477-19498 doi: 10.1029/2000JC900063
    [31] QIU B, CHEN S M, KLEIN P, et al. Reconstructing upper-ocean vertical velocity field from sea surface height in the presence of unbalanced motion[J]. Journal of Physical Oceanography, 2020, 50(1): 55-79 doi: 10.1175/JPO-D-19-0172.1
    [32] SU Z, WANG J B, KLEIN P, et al. Ocean submesoscales as a key component of the global heat budget[J]. Nature Communications, 2018, 9(1): 775 doi: 10.1038/s41467-018-02983-w
    [33] MCGILLICUDDY JR D J. Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale[J]. Annual Review of Marine Science, 2016, 8: 125 doi: 10.1146/annurev-marine-010814-015606
    [34] LAGERLOEF G S E, MITCHUM G T, LUKAS R B, et al. Tropical Pacific near-surface currents estimated from altimeter, wind, and drifter data[J]. Journal of Geophysical Research: Oceans, 1999, 104(C10): 23313-23326 doi: 10.1029/1999JC900197
    [35] WANG M Y, XIE S P, SHEN S S P, et al. Rossby and Yanai modes of tropical instability waves in the equatorial Pacific Ocean and a diagnostic model for surface currents[J]. Journal of Physical Oceanography, 2020, 50(10): 3009-3024 doi: 10.1175/JPO-D-20-0063.1
    [36] LUMPKIN R, JOHNSON G C. Global ocean surface velocities from drifters: mean, variance, El Niño–Southern Oscillation response, and seasonal cycle[J]. Journal of Geophysical Research: Oceans, 2013, 118(6): 2992-3006 doi: 10.1002/jgrc.20210
    [37] GOMMENGINGER C, CHAPRON B, HOGG A, et al. SEASTAR: a mission to study ocean submesoscale dynamics and small-scale atmosphere-ocean processes in coastal, shelf and polar seas[J]. Frontiers in Marine Science, 2019, 6: 457 doi: 10.3389/fmars.2019.00457
    [38] ARDHUIN F, BRANDT P, GAULTIER L, et al. SKIM, a candidate satellite mission exploring global ocean currents and waves[J]. Frontiers in Marine Science, 2019, 6: 8 doi: 10.3389/fmars.2019.00008
    [39] BAO Q L, DONG X L, ZHU D, et al. The feasibility of ocean surface current measurement using pencil-beam rotating scatterometer[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(7): 3441-3451 doi: 10.1109/JSTARS.2015.2414451
    [40] BAO Q L, LIN M S, ZHANG Y G, et al. Ocean surface current inversion method for a Doppler scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11): 6505-6516 doi: 10.1109/TGRS.2017.2728824
    [41] MIAO Y J, DONG X L, BAO Q L, et al. Perspective of a Ku-Ka dual-frequency scatterometer for simultaneous wide-swath ocean surface wind and current measurement[J]. Remote Sensing, 2018, 10(7): 1042 doi: 10.3390/rs10071042
    [42] RODRÍGUEZ E, BOURASSA M, CHELTON D, et al. The winds and currents mission concept[J]. Frontiers in Marine Science, 2019, 6: 438 doi: 10.3389/fmars.2019.00438
    [43] RODRÍGUEZ E, WINETEER A, PERKOVIC-MARTIN D, et al. Ka-band Doppler scatterometry over a loop current eddy[J]. Remote Sensing, 2020, 12(15): 2388 doi: 10.3390/rs12152388
    [44] ARDHUIN F, AKSENOV Y, BENETAZZO A, et al. Measuring currents, ice drift, and waves from space: the Sea surface KInematics Multiscale monitoring (SKIM) concept[J]. Ocean Science, 2018, 14(3): 337-354 doi: 10.5194/os-14-337-2018
    [45] LÓPEZ-DEKKER P, ROTT H, PRATS-IRAOLA P, et al. Harmony: an earth explorer 10 mission candidate to observe land, ice, and ocean surface dynamics[C]//2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Japan: IEEE, 2019: 8381-8384
    [46] CHELTON D B, SCHLAX M G, SAMELSON R M, et al. Prospects for future satellite estimation of small-scale variability of ocean surface velocity and vorticity[J]. Progress in Oceanography, 2019, 173: 256-350 doi: 10.1016/j.pocean.2018.10.012
    [47] BYRNE D, MÜNNICH M, FRENGER I, et al. Mesoscale atmosphere ocean coupling enhances the transfer of wind energy into the ocean[J]. Nature Communications, 2016, 7: ncomms11867 doi: 10.1038/ncomms11867
    [48] MA X H, JING Z, CHANG P, et al. Western boundary currents regulated by interaction between ocean eddies and the atmosphere[J]. Nature, 2016, 535(7613): 533-537 doi: 10.1038/nature18640
    [49] LEDWELL J R, MONTGOMERY E T, POLZIN K L, et al. Evidence for enhanced mixing over rough topography in the abyssal ocean[J]. Nature, 2000, 403(6766): 179-182 doi: 10.1038/35003164
    [50] POLZIN K L, TOOLE J M, LEDWELL J R, et al. Spatial variability of turbulent mixing in the abyssal ocean[J]. Science, 1997, 276(5309): 93-96
    [51] THOMAS L N, TANDON A, MAHADEVAN A. Submesoscale processes and dynamics[M]//HECHT M W, HASUMI H. Ocean Modeling in an Eddying Regime. Washington: American Geophysical Union, 2008: 17-38
    [52] BACHMAN S D, FOX-KEMPER B, TAYLOR J R, et al. Parameterization of frontal symmetric instabilities. I: theory for resolved fronts[J]. Ocean Modelling, 2017, 109: 72 doi: 10.1016/j.ocemod.2016.12.003
    [53] FOIS F, HOOGEBOOM P, LE CHEVALIER F, et al. DopSCAT: a mission concept for simultaneous measurements of marine winds and surface currents[J]. Journal of Geophysical Research: Oceans, 2015, 120(12): 7857-7879 doi: 10.1002/2015JC011011
    [54] RODRÍGUEZ E, WINETEER A, PERKOVIC-MARTIN D, et al. Estimating ocean vector winds and currents using a Ka-band pencil-beam Doppler scatterometer[J]. Remote Sensing, 2018, 10(4): 576 doi: 10.3390/rs10040576
    [55] PEREGRINE D H. Tidal currents[M]//SCHWARTZ M. The Encyclopedia of Beaches and Coastal Environments. New York: Springer, 1984: 816-817
    [56] FLEXAS M M, THOMPSON A F, TORRES H S, et al. Global estimates of the energy transfer from the wind to the ocean, with emphasis on near-inertial oscillations[J]. Journal of Geophysical Research: Oceans, 2019, 124(8): 5723-5746 doi: 10.1029/2018JC014453
    [57] FRENGER I, GRUBER N, KNUTTI R, et al. Imprint of Southern Ocean eddies on winds, clouds and rainfall[J]. Nature Geoscience, 2013, 6(8): 608-612 doi: 10.1038/ngeo1863
    [58] OMAND M M, D’ASARO E A, LEE C M, et al. Eddy-driven subduction exports particulate organic carbon from the spring bloom[J]. Science, 2015, 348(6231): 222-225 doi: 10.1126/science.1260062
    [59] RENAULT L, MOLEMAKER M J, GULA J, et al. Control and stabilization of the Gulf Stream by oceanic current interaction with the atmosphere[J]. Journal of Physical Oceanography, 2016, 46(11): 3439-3453 doi: 10.1175/JPO-D-16-0115.1
    [60] SMITH S V, MACKENZIE F T. The ocean as a net heterotrophic system: implications from the carbon biogeochemical cycle[J]. Global Biogeochemical Cycles, 1987, 1(3): 187-198 doi: 10.1029/GB001i003p00187
    [61] VOLK T, HOFFERT M I. Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes[M]//SUNDQUIST E T, BROECKER W S. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. Washington: American Geophysical Union, 1985: 99-110
    [62] FRIEDLINGSTEIN P, JONES M W, O’SULLIVAN M, et al. Global carbon budget 2019[J]. Earth System Science Data, 2019, 11(4): 1783-1838 doi: 10.5194/essd-11-1783-2019
    [63] SABINE C L, FEELY R A, GRUBER N, et al. The oceanic sink for anthropogenic CO2[J]. Science, 2004, 305(5682): 367-371 doi: 10.1126/science.1097403
    [64] KLEIN P, LAPEYRE G. The oceanic vertical pump induced by mesoscale and submesoscale turbulence[J]. Annual Review of Marine Science, 2009, 1: 351-375 doi: 10.1146/annurev.marine.010908.163704
    [65] MCGILLICUDDY JR D J, ANDERSON L A, DONEY S C, et al. Eddy-driven sources and sinks of nutrients in the upper ocean: results from a 0.1° resolution model of the North Atlantic[J]. Global Biogeochemical Cycles, 2003, 17(2): 1035
    [66] MCGILLICUDDY JR D J, ANDERSON L A, BATES N R, et al. Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms[J]. Science, 2007, 316(5827): 1021-1026 doi: 10.1126/science.1136256
    [67] BALWADA D, SMITH K S, ABERNATHEY R. Submesoscale vertical velocities enhance tracer subduction in an idealized Antarctic Circumpolar Current[J]. Geophysical Research Letters, 2018, 45(18): 9790-9802 doi: 10.1029/2018GL079244
    [68] FREILICH M A, MAHADEVAN A. Decomposition of vertical velocity for nutrient transport in the upper ocean[J]. Journal of Physical Oceanography, 2019, 49(6): 1561-1575 doi: 10.1175/JPO-D-19-0002.1
    [69] LÉVY M. The modulation of biological production by oceanic mesoscale turbulence[M]//WEISS J B, PROVENZALE A. Transport and Mixing in Geophysical Flows. Berlin, Heidelberg: Springer, 2008: 219-261
    [70] MAHADEVAN A, ARCHER D. Modeling the impact of fronts and mesoscale circulation on the nutrient supply and biogeochemistry of the upper ocean[J]. Journal of Geophysical Research: Oceans, 2000, 105(C1): 1209-1225 doi: 10.1029/1999JC900216
    [71] MAHADEVAN A. The impact of submesoscale physics on primary productivity of plankton[J]. Annual Review of Marine Science, 2016, 8: 161-184 doi: 10.1146/annurev-marine-010814-015912
    [72] RUIZ S, CLARET M, PASCUAL A, et al. Effects of oceanic mesoscale and submesoscale frontal processes on the vertical transport of phytoplankton[J]. Journal of Geophysical Research: Oceans, 2019, 124(8): 5999-6014 doi: 10.1029/2019JC015034
    [73] JONES J E, DAVIES A M. Storm surge computations for the Irish Sea using a three-dimensional numerical model including wave–current interaction[J]. Continental Shelf Research, 1998, 18(2/3/4): 201-251
    [74] LARGE W G, POND S. Open ocean momentum flux measurements in moderate to strong winds[J]. Journal of Physical Oceanography, 1981, 11(3): 324-336 doi: 10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2
    [75] SMITH S D. Wind stress and heat flux over the ocean in gale force winds[J]. Journal of Physical Oceanography, 1980, 10(5): 709-726 doi: 10.1175/1520-0485(1980)010<0709:WSAHFO>2.0.CO;2
    [76] FLEMING G R, RATNER M A. Grand challenges in basic energy sciences[J]. Physics Today, 2008, 61(7): 28 doi: 10.1063/1.2963009
    [77] KAMACHI M, KURAGANO T, ICHIKAWA H, et al. Operational data assimilation system for the Kuroshio south of Japan: reanalysis and validation[J]. Journal of Oceanography, 2004, 60(2): 303-312 doi: 10.1023/B:JOCE.0000038336.87717.b7
    [78] JOHNSON E S, BONJEAN F, LAGERLOEF G S E, et al. Validation and error analysis of OSCAR sea surface currents[J]. Journal of Atmospheric and Oceanic Technology, 2007, 24(4): 688-701 doi: 10.1175/JTECH1971.1
    [79] QIU B, CHEN S M, KLEIN P, et al. Seasonality in transition scale from balanced to unbalanced motions in the world ocean[J]. Journal of Physical Oceanography, 2018, 48(3): 591-605 doi: 10.1175/JPO-D-17-0169.1
    [80] YU X L, NAVEIRA GARABATO A C, MARTIN A P, et al. An annual cycle of submesoscale vertical flow and restratification in the upper ocean[J]. Journal of Physical Oceanography, 2019, 49(6): 1439-1461 doi: 10.1175/JPO-D-18-0253.1
    [81] RIO M H, SANTOLERI R. Improved global surface currents from the merging of altimetry and sea surface temperature data[J]. Remote Sensing of Environment, 2018, 216: 770-785 doi: 10.1016/j.rse.2018.06.003
    [82] BOURASSA M A, RODRIGUEZ E, CHELTON D. Winds and currents mission: ability to observe mesoscale AIR/SEA coupling[C]//IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Beijing, China: IEEE, 2016: 7392-7395
    [83] JOHNSON J W, WEISSMAN D E, JONES W L. Measurements of ocean surface spectrum from an aircraft using the two-frequency microwave resonance technique[J]. International Journal of Remote Sensing, 1982, 3(4): 383-407 doi: 10.1080/01431168208948411
    [84] HAUSER D, TISON C, AMIOT T, et al. SWIM: the first spaceborne wave scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 3000-3014 doi: 10.1109/TGRS.2017.2658672
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  338
  • HTML全文浏览量:  88
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-02
  • 录用日期:  2022-09-10
  • 修回日期:  2022-09-10
  • 网络出版日期:  2022-09-21

目录

    /

    返回文章
    返回