留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间旋转目标消旋力矩仿真分析

石永康 黄少华 廖潜 陈金山

石永康, 黄少华, 廖潜, 陈金山. 空间旋转目标消旋力矩仿真分析[J]. 空间科学学报, 2022, 42(5): 1004-1011. doi: 10.11728/cjss2022.05.210709075
引用本文: 石永康, 黄少华, 廖潜, 陈金山. 空间旋转目标消旋力矩仿真分析[J]. 空间科学学报, 2022, 42(5): 1004-1011. doi: 10.11728/cjss2022.05.210709075
SHI Yongkang, HUANG Shaohua, LIAO Qian, CHEN Jinshan. Finite Element Simulation Analysis of Damping Torque of Space Rotating Object (in Chinese). Chinese Journal of Space Science, 2022, 42(5): 1004-1011 doi: 10.11728/cjss2022.05.210709075
Citation: SHI Yongkang, HUANG Shaohua, LIAO Qian, CHEN Jinshan. Finite Element Simulation Analysis of Damping Torque of Space Rotating Object (in Chinese). Chinese Journal of Space Science, 2022, 42(5): 1004-1011 doi: 10.11728/cjss2022.05.210709075

空间旋转目标消旋力矩仿真分析

doi: 10.11728/cjss2022.05.210709075
基金项目: 国家自然科学基金项目(51965056),2019年度自治区高校科研计划项目(61021800081),新疆大学科研启动项目(620312351)和自治区高层次人才项目(100400027)共同资助
详细信息
    作者简介:

    黄少华:E-mail:hsh@stu.xju.edu.cn

  • 中图分类号: V414

Finite Element Simulation Analysis of Damping Torque of Space Rotating Object

  • 摘要: 针对提高空间旋转目标消旋效率的问题,使用电磁场软件MAXWELL对球壳的消旋力矩进行分析。设计并建立了二维亥姆霍兹线圈仿真模型,并对仿真模型进行有效性验证,使用验证后的仿真模型分析了单因素影响下的球壳消旋力矩变化情况,进而对现有的球壳消旋力矩解析式进行修正。仿真结果表明,现有的球壳消旋力矩解析式有其适用条件,适用于厚度与半径之比小于0.023的球壳,新的球壳消旋力矩解析式与原有解析式相比计算误差更小。

     

  • 图  1  电磁–涡流消旋概念

    Figure  1.  Damping by electromagnetic eddy currents

    图  2  亥姆霍兹线圈

    Figure  2.  Helmholtz coil

    图  3  线圈模型和球壳模型

    Figure  3.  Finite element model of coil and spherical shell

    图  4  匀强磁场云图

    Figure  4.  Cloud map of uniform magnetic field

    图  5  中心区域匀强磁场分布

    Figure  5.  Distribution of uniform magnetic field in the center area

    图  6  各因素影响下的球壳模型消旋力矩变化情况

    Figure  6.  Variation trend of damping torque of spherical shell model under various factors

    图  7  各因素影响下的相对误差

    Figure  7.  Relative error under the influence of each factors

    图  8  电导率、线圈电流、球壳旋转速度影响下的相对误差

    Figure  8.  Relative error under conductivity, coil current and the rotation speed of the spherical shell

    图  9  球壳的厚度与半径之比影响下的相对误差

    Figure  9.  Relative error under the ratio of the shell thickness to the shell radius

    图  10  各因素影响下的相对误差

    Figure  10.  Relative error under the influence of each factor

    图  11  球壳的厚度与半径之比影响下的相对误差

    Figure  11.  Relative error under the ratio of the shell thickness to the shell radius

    表  1  中心区域磁感应强度大小

    Table  1.   Magnitude of magnetic flux density of the center area

    NumberMagnetic flux density (×10–5)/T
    15.40084
    25.40086
    35.40087
    45.40086
    55.40085
    65.40083
    75.40080
    85.40078
    95.40078
    105.40081
    下载: 导出CSV
  • [1] 申麟, 陈蓉, 焉宁, 等. 空间碎片主动移除技术研究综述[J]. 空间碎片研究, 2020, 20(2): 1-6

    SHEN Lin, CHEN Rong, YAN Ning, et al. Review of active space debris removal research[J]. Space Debris Research, 2020, 20(2): 1-6
    [2] 马广富, 郭延宁, 邱爽, 等. 空间非合作目标消旋技术研究现状总结与展望[J]. 飞控与探测, 2018, 1(1): 26-33

    MA Guangfu, GUO Yanning, QIU Shuang, et al. Summary and prospect of de-tumbling methods of space noncooperative targets[J]. Flight Control & Detection, 2018, 1(1): 26-33
    [3] ORTIZ GÓMEZ N, WALKER S J I. Eddy currents applied to de-tumbling of space debris: analysis and validation of approximate proposed methods[J]. Acta Astronautica, 2015, 114: 34-53 doi: 10.1016/j.actaastro.2015.04.012
    [4] GÓMEZ N O, WALKER S J, JANKOVIC M, et al. Control analysis for a contactless de-tumbling method based on eddy currents: problem definition and approximate proposed solutions[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference. San Diego: AIAA, 2016
    [5] 石永康, 杨乐平, 朱彦伟, 等. 空间旋转目标涡流消旋概念与仿真分析[J]. 宇航学报, 2018, 39(10): 1089-1096 doi: 10.3873/j.issn.1000-1328.2018.10.004

    SHI Yongkang, YANG Leping, ZHU Yanwei, et al. Modeling and simulation of superconducting eddy brake concept for space tumbling object[J]. Journal of Astronautics, 2018, 39(10): 1089-1096 doi: 10.3873/j.issn.1000-1328.2018.10.004
    [6] 褚福东. 空间电磁-涡流消旋建模与仿真研究[D]. 长沙: 国防科技大学, 2018

    CHU Fudong. Research on Modeling and Simulation of Space Spinning Targets Damping by Electromagnetic Eddy Currents[D]. Changsha: National University of Defense Technology, 2018
    [7] 孙全浩. 空间非磁化金属体的近距离无接触式减旋机构研究[D]. 哈尔滨: 哈尔滨工业大学, 2020

    SUN Quanhao. Research on the Proximity Non-contact Detumbling Mechanism for Space Unmagnetized Metal Body[D]. Harbin: Harbin Institute of Technology, 2020
    [8] 应之丁, 陈家敏. 永磁减速装置结构对制动性能的影响分析[J]. 城市轨道交通研究, 2020, 23(9): 18-21

    YING Zhiding, CHEN Jiamin. Influence analysis of the permanent magnet reducer structure on braking performance[J]. Urban Mass Transit, 2020, 23(9): 18-21
    [9] 应之丁, 陈家敏. 基于电磁场形态调整的涡流制动效能分析[J]. 同济大学学报(自然科学版), 2020, 48(3): 436-440 doi: 10.11908/j.issn.0253-374x.19224

    YING Zhiding, CHEN Jiamin. Efficiency analysis of eddy current braking based on electromagnetic field shape adjustment[J]. Journal of Tongji University (Natural Science), 2020, 48(3): 436-440 doi: 10.11908/j.issn.0253-374x.19224
    [10] SUGAI F, ABIKO S, TSUJITA T, et al. Development of an eddy current brake system for detumbling malfunctioning satellites[C]//Proceedings of 2012 IEEE/SICE International Symposium on System Integration (SII). Fukuoka: IEEE, 2012: 325-330
    [11] 赵凯华, 陈熙谋. 电磁学[M]. 4版. 北京: 高等教育出版社, 2018: 109-120

    ZHAO Kaihua, CHEN Ximou. Electromagnetism[M]. 4th ed. Beijing: Higher Education Press, 2018: 109-120
    [12] 应之丁, 林建平. 列车涡流制动机理及制动力矩模型[M]. 上海: 同济大学出版社, 2014: 51-61

    YING Zhiding, LIN Jianping. Mechanism and Torque Model of Eddy Current Braking on High-Speed Train[M]. Shanghai: Tongji University Press, 2014: 51-61
    [13] 王惠芬, 杨碧琦, 刘刚. 航天器结构材料的应用现状与未来展望[J]. 材料导报, 2018, 32(S1): 395-399

    WANG Huifen, YANG Biqi, LIU Gang. Application status and future prospect of materials for spacecraft structural[J]. Materials Review, 2018, 32(S1): 395-399
    [14] 邢焰, 王向轲. 航天器材料[M]. 北京: 北京理工大学出版社, 2018: 73-156

    XING Yan, WANG Xiangke. Spacecraft Materials[M]. Beijing: Beijing Institute of Technology Press, 2018: 73-156
    [15] VON TIESENHAUSEN G F. Magnetic spin reduction system for free spinning objects: US, 4582277[P]. 1986-04-15
    [16] ŠILHA J, PITTET J N, HAMARA M, et al. Apparent rotation properties of space debris extracted from photometric measurements[J]. Advances in Space Research, 2018, 61(3): 844-861 doi: 10.1016/j.asr.2017.10.048
    [17] ORMSBY J F. Eddy Current Torques and Motion Decay on Rotating Shells[R]. MITRE CORP BEDFORD MA, 1967
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  171
  • HTML全文浏览量:  100
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-04
  • 录用日期:  2022-01-05
  • 修回日期:  2022-04-18
  • 网络出版日期:  2022-09-05

目录

    /

    返回文章
    返回