留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Aura/MLS与TIMED/SABER观测全球重力波特性

杨文凯 杨钧烽 郭文杰 杨晓华 夏仲飞 张炳炎 程旋 胡雄

杨文凯, 杨钧烽, 郭文杰, 杨晓华, 夏仲飞, 张炳炎, 程旋, 胡雄. Aura/MLS与TIMED/SABER观测全球重力波特性[J]. 空间科学学报, 2022, 42(5): 919-926. doi: 10.11728/cjss2022.05.210906098
引用本文: 杨文凯, 杨钧烽, 郭文杰, 杨晓华, 夏仲飞, 张炳炎, 程旋, 胡雄. Aura/MLS与TIMED/SABER观测全球重力波特性[J]. 空间科学学报, 2022, 42(5): 919-926. doi: 10.11728/cjss2022.05.210906098
YANG Wenkai, YANG Junfeng, GUO Wenjie, YANG Xiaohua, XIA Zhongfei, ZHANG Bingyan, CHENG Xuan, HU Xiong. Global Stratospheric Gravity Wave Characteristics by Aura/MLS and TIMED/SABER Observation Data (in Chinese). Chinese Journal of Space Science, 2022, 42(5): 919-926 doi: 10.11728/cjss2022.05.210906098
Citation: YANG Wenkai, YANG Junfeng, GUO Wenjie, YANG Xiaohua, XIA Zhongfei, ZHANG Bingyan, CHENG Xuan, HU Xiong. Global Stratospheric Gravity Wave Characteristics by Aura/MLS and TIMED/SABER Observation Data (in Chinese). Chinese Journal of Space Science, 2022, 42(5): 919-926 doi: 10.11728/cjss2022.05.210906098

Aura/MLS与TIMED/SABER观测全球重力波特性

doi: 10.11728/cjss2022.05.210906098
基金项目: 中国科学院A类战略性先导科技专项(XDA17010301),国家自然科学基金项目(41905038, 41675031,42174192, 11872128)和中国科学院国家空间科学中心“攀登计划”项目共同资助
详细信息
    作者简介:

    杨文凯:E-mail:xthyangkaixin@163.com

    通讯作者:

    杨钧烽,E-mail:yangjunfeng@nssc.ac.cn

  • 中图分类号: P351

Global Stratospheric Gravity Wave Characteristics by Aura/MLS and TIMED/SABER Observation Data

  • 摘要: 大气重力波是临近空间环境主要大气波动之一,对全球环流具有重要影响。卫星上搭载的临边探测器能够探测临近空间大气温度,可用于临近空间大气重力波研究。利用2012-2014年Aura的微波临边探测器(MLS)和TIMED的红外临边探测器(SABER)的探测数据,对20~50 km高度的大气重力波扰动分布特征开展了分析研究,两种观测重力波活动基本一致,重力波随季节、纬度及高度的变化显著。冬季半球高纬度重力波扰动较强,赤道和夏季半球近赤道地区上空也存在明显重力波活动区域,夏季半球高纬度重力波扰动最弱。重力波扰动强度随高度增加。TIMED/SABER重力波扰动强度数值比 Aura/MLS略强。

     

  • 图  1  利用Aura/MLS观测数据分析的30 km高度全球重力波扰动强度分布

    Figure  1.  Global distribution of gravity waves observed by Aura/MLS at 30 km height

    图  2  利用Aura/MLS观测数据分析得到的50 km高度全球重力波扰动强度分布

    Figure  2.  Global distribution of gravity waves observed by Aura/MLS at 50 km height

    图  3  Aura/MLS观测数据分析的纬圈平均重力波扰动随高度和纬度的变化

    Figure  3.  Latitude-altitude distribution of zonal mean gravity waves observed by Aura/MLS

    图  4  TIMED/SABER观测数据分析的30 km高度全球重力波扰动强度分布

    Figure  4.  Global distribution of gravity waves observed by TIMED/SABER at 30 km height

    图  5  TIMED/SABER观测数据分析的50 km高度全球重力波扰动强度分布

    Figure  5.  Global distribution of gravity waves observed by TIMED/SABER at 50 km height

    图  6  TIMED/SABER观测数据分析的纬圈平均扰动随高度和纬度的变化

    Figure  6.  Latitude-altitude distribution of zonal mean gravity waves observed by TIMED/SABER

  • [1] SMITH A K. Global dynamics of the MLT[J]. Surveys in Geophysics, 2012, 33(6): 1177-1230 doi: 10.1007/s10712-012-9196-9
    [2] LÜ Daren, CHEN Zeyu, GUO Xia, et al. Recent progress in near space atmospheric environment study[J]. Advances in Mechanics, 2009, 39(6): 674-682 doi: 10.3321/j.issn:1000-0992.2009.06.008
    [3] 万卫星, 徐寄遥. 中国高层大气与电离层耦合研究进展[J]. 中国科学: 地球科学, 2014, 44(9): 1863-1883 doi: 10.1007/s11430-014-4923-3

    WAN Weixing, XU Jiyao. Recent investigation on the coupling between the ionosphere and upper atmosphere[J]. Science China Earth Sciences, 2014, 44(9): 1863-1883 doi: 10.1007/s11430-014-4923-3
    [4] LIU H L, MCINERNEY J M, SANTOS S, et al. Gravity waves simulated by high-resolution Whole Atmosphere Community Climate Model[J]. Geophysical Research Letters, 2014, 41(24): 9106-9112 doi: 10.1002/2014GL062468
    [5] FRITTS D C, ALEXANDER M J. Gravity wave dynamics and effects in the middle atmosphere[J]. Reviews of Geophysics, 2003, 41(1): 1003
    [6] TIAN C X, HU X, LIU A Z, et al. Diurnal and seasonal variability of short-period gravity waves at ~40° N using meteor radar wind observations[J]. Advances in Space Research, 2021, 68(3): 1341-1355 doi: 10.1016/j.asr.2021.03.028
    [7] 巴金, 闫召爱, 胡雄, 等. 基于激光雷达实测和动力学仿真方法研究中间层顶垂直风扰动特性[J]. 空间科学学报, 2017, 37(5): 554-563 doi: 10.11728/cjss2017.05.554

    BA Jin, YAN Zhaoai, HU Xiong, et al. Characteristics of vertical wind perturbations in the mesopause region based on lidar measurements and dynamic simulations[J]. Chinese Journal of Space Science, 2017, 37(5): 554-563 doi: 10.11728/cjss2017.05.554
    [8] TU Cui, HU Xiong, YAN Zhaoai, et al. First imaging observation of the gravity waves in the mesopause region in China[J]. Chinese Science Bulletin, 2010, 55(6): 539-543 doi: 10.1007/s11434-009-0489-4
    [9] YUE J, HOFFMANN L, ALEXANDER M J. Simultaneous observations of convective gravity waves from a ground-based airglow imager and the AIRS satellite experiment[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(8): 3178-3191 doi: 10.1002/jgrd.50341
    [10] 王博, 胡雄, 肖存英, 等. 子午工程首次火箭探空数据准单色惯性重力波特性分析[J]. 空间科学学报, 2017, 37(5): 547-553 doi: 10.11728/cjss2017.05.547

    WANG Bo, HU Xiong, XIAO Cunying, et al. Characteristics of quasi-monochromatic inertia gravity waves revealed by first meteorological rocket data of the Meridian Space Weather Monitoring Project[J]. Chinese Journal of Space Science, 2017, 37(5): 547-553 doi: 10.11728/cjss2017.05.547
    [11] ZHANG S D, YI F, HUANG C M, et al. Latitudinal and altitudinal variability of lower atmospheric inertial gravity waves revealed by U. S. radiosonde data[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(14): 7750 doi: 10.1002/jgrd.50623
    [12] 陈洪滨. 中高层大气研究的空间探测[J]. 地球科学进展, 2009, 24(3): 229-241 doi: 10.3321/j.issn:1001-8166.2009.03.002

    CHEN Hongbin. An overview of the space-based observations for upper atmospheric research[J]. Advances in Earth Science, 2009, 24(3): 229-241 doi: 10.3321/j.issn:1001-8166.2009.03.002
    [13] JIANG J H, ECKERMANN S D, WU D L, et al. Seasonal variation of gravity wave sources from satellite observation[J]. Advances in Space Research, 2005, 35(11): 1925-1932 doi: 10.1016/j.asr.2005.01.099
    [14] HOFFMANN L, XUE X, ALEXANDER M J. A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(2): 416-434 doi: 10.1029/2012JD018658
    [15] GONG J, WU D L, ECKERMANN S D. Gravity wave variances and propagation derived from AIRS radiances[J]. Atmospheric Chemistry and Physics, 2012, 12(4): 1701-1720 doi: 10.5194/acp-12-1701-2012
    [16] 郭文杰, 姚志刚, 杨钧烽, 等. AIRS观测资料研究全球平流层重力波特性[J]. 空间科学学报, 2021, 41(4): 609-616 doi: 10.11728/cjss2021.04.609

    GUO Wenjie, YAO Zhigang, YANG Junfeng, et al. Research on global stratospheric gravity wave characteristics by AIRS observation data[J]. Chinese Journal of Space Science, 2021, 41(4): 609-616 doi: 10.11728/cjss2021.04.609
    [17] WU D L, ECKERMANN S D. Global gravity wave variances from Aura MLS: characteristics and interpretation[J]. Journal of the Atmospheric Sciences, 2008, 65(12): 3695-3718 doi: 10.1175/2008JAS2489.1
    [18] WU D L, PREUSSE P, ECKERMANN S D, et al. Remote sounding of atmospheric gravity waves with satellite limb and nadir techniques[J]. Advances in Space Research, 2006, 37(12): 2269-2277 doi: 10.1016/j.asr.2005.07.031
    [19] PREUSSE P, ECKERMANN S D, ERN M, et al. Global ray tracing simulations of the SABER gravity wave climatology[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D8): D08126
    [20] ERN M, PREUSSE P, GILLE J C, et al. Implications for atmospheric dynamics derived from global observations of gravity wave momentum flux in stratosphere and mesosphere[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(19): D19107
    [21] ZHANG Y, XIONG J, LIU L, et al. A global morphology of gravity wave activity in the stratosphere revealed by the 8-year SABER/TIMED data[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D21): D21101
    [22] 肖存英, 胡雄, 王博, 等. 临近空间大气扰动变化特性的定量研究[J]. 地球物理学报, 2016, 59(4): 1211-1221 doi: 10.6038/cjg20160404

    XIAO Cunying, HU Xiong, WANG Bo, et al. Quantitative studies on the variations of near space atmospheric fluctuation[J]. Chinese Journal of Geophysics, 2016, 59(4): 1211-1221 doi: 10.6038/cjg20160404
    [23] JOHN S R, KUMAR K K. A discussion on the methods of extracting gravity wave perturbations from space-based measurements[J]. Geophysical Research Letters, 2013, 40(10): 2406-2410 doi: 10.1002/grl.50451
    [24] 郭文杰, 胡雄, 闫召爱, 等. 利用瑞利激光雷达观测北京地区上平流层地形重力波活动[J]. 地球物理学报, 2015, 58(10): 3481-3486 doi: 10.6038/cjg20151004

    GUO Wenjie, HU Xiong, YAN Zhaoai, et al. Terrain-generated gravity waves in the upper stratosphere detected by Rayleigh lidar[J]. Chinese Journal of Geophysics, 2015, 58(10): 3481-3486 doi: 10.6038/cjg20151004
    [25] YANG J F, XIAO C Y, HU X, et al. Responses of zonal wind at ~40°N to stratospheric sudden warming events in the stratosphere, mesosphere and lower thermosphere[J]. Science China Technological Sciences, 2017, 60(6): 935-945 doi: 10.1007/s11431-016-0310-8
    [26] JIA Y, ZHANG S D, YI F, et al. Observations of gravity wave activity during stratospheric sudden warmings in the Northern Hemisphere[J]. Science China Technological Sciences, 2015, 58(6): 951-960 doi: 10.1007/s11431-015-5806-3
  • 加载中
图(6)
计量
  • 文章访问数:  300
  • HTML全文浏览量:  150
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-05
  • 录用日期:  2022-03-31
  • 修回日期:  2022-05-15
  • 网络出版日期:  2022-09-30

目录

    /

    返回文章
    返回