留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平流层飞艇总体设计的基础问题

于春锐 乔凯 刘东旭

于春锐, 乔凯, 刘东旭. 平流层飞艇总体设计的基础问题[J]. 空间科学学报, 2022, 42(5): 927-932. doi: 10.11728/cjss2022.05.211015106
引用本文: 于春锐, 乔凯, 刘东旭. 平流层飞艇总体设计的基础问题[J]. 空间科学学报, 2022, 42(5): 927-932. doi: 10.11728/cjss2022.05.211015106
YU Chunrui, QIAO Kai, LIU Dongxu. Basic Problems Research in Stratospheric Airship Design (in Chinese). Chinese Journal of Space Science, 2022, 42(5): 927-932 doi: 10.11728/cjss2022.05.211015106
Citation: YU Chunrui, QIAO Kai, LIU Dongxu. Basic Problems Research in Stratospheric Airship Design (in Chinese). Chinese Journal of Space Science, 2022, 42(5): 927-932 doi: 10.11728/cjss2022.05.211015106

平流层飞艇总体设计的基础问题

doi: 10.11728/cjss2022.05.211015106
详细信息
    作者简介:

    于春锐:E-mail:ycrzxc@163.com

  • 中图分类号: V274

Basic Problems Research in Stratospheric Airship Design

  • 摘要: 平流层飞艇是一种新型的长航时临近空间飞行器,具有驻空高度高、驻空时间长、承载能力大、使用效费比高等特点,在对地观测及通信中继等领域具有广泛应用前景。但是该飞行器系统十分复杂,技术与设计实现难度大,总体设计需要考虑的基础问题及解决方案尚不完全明晰。根据平流层大气风场、温度和压力的基础特征,考虑平流层环境对平流层飞艇总体设计的影响,根据空气动力学与热力学基本理论,分析平流层飞艇的显著特征及与常规低空飞艇的区别,研究这些基础问题对平流层飞艇总体设计的影响,为平流层飞艇技术发展提供建议和参考。

     

  • 图  1  某地区20 km定高探空气球 1 h 轨迹曲线

    Figure  1.  One-hour trajectory of a 20 km-fixed-altitude sounding balloon in a certain area

    图  2  某探空气球气压高度与卫星导航高度测量值曲线

    Figure  2.  Measured altitude curves of a sounding balloon by barometric altimeter and satellite navigation system

    图  3  平流层飞艇艇体表面温度分布

    Figure  3.  Temperature distribution of envelope surface of a stratospheric airship

  • [1] 童志鹏, 吴佑寿. 平流层信息平台[J]. 科技导报, 1999, 17(3): 8-10 doi: 10.3321/j.issn:1000-7857.1999.03.002

    TONG Zhipeng, WU Youshou. The stratosphere information platform[J]. Science & Technology Review, 1999, 17(3): 8-10 doi: 10.3321/j.issn:1000-7857.1999.03.002
    [2] 祝明, 陈天, 梁浩全, 等. 临近空间浮空器研究现状与发展展望[J]. 国际航空, 2016(1): 22-25

    ZHU Ming, CHEN Tian, LIANG Haoquan, et al. Near-space airships outlook[J]. International Aviation, 2016(1): 22-25
    [3] 崔尔杰. 近空间飞行器研究发展现状及关键技术问题[J]. 力学进展, 2009, 39(6): 658-673 doi: 10.3321/j.issn:1000-0992.2009.06.007

    CUI Erjie. Research statutes, development trends and key technical problems of near space flying vehicles[J]. Advances in Mechanics, 2009, 39(6): 658-673 doi: 10.3321/j.issn:1000-0992.2009.06.007
    [4] 赵达, 刘东旭, 孙康文, 等. 平流层飞艇研制现状、技术难点及发展趋势[J]. 航空学报, 2016, 37(1): 45-56

    ZHAO Da, LIU Dongxu, SUN Kangwen, et al. Research status, technical difficulties and development trend of stratospheric airship[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 45-56
    [5] 姚伟, 李勇, 郑威, 等. 平流层飞艇飞行温度限和飞行速度限分析[J]. 宇航学报, 2011, 32(6): 1239-1243 doi: 10.3873/j.issn.1000-1328.2011.06.005

    YAO Wei, LI Yong, ZHENG Wei, et al. Analysis of flight temperature limits and flight velocity limits for stratospheric airship[J]. Journal of Astronautics, 2011, 32(6): 1239-1243 doi: 10.3873/j.issn.1000-1328.2011.06.005
    [6] 杨燕初, 王生, 顾逸东, 等. 基于遗传算法的临近空间飞艇多学科优化设计[J]. 计算机仿真, 2012, 29(4): 49-54 doi: 10.3969/j.issn.1006-9348.2012.04.012

    YANG Yanchu, WANG Sheng, GU Yidong, et al. Multidisciplinary design optimization of near space airship based on genetic algorithm[J]. Computer Simulation, 2012, 29(4): 49-54 doi: 10.3969/j.issn.1006-9348.2012.04.012
    [7] MENG J H, LIU S Y, YAO Z B, et al. Optimization design of a thermal protection structure for the solar array of stratospheric airships[J]. Renewable Energy, 2019, 133: 593-605 doi: 10.1016/j.renene.2018.10.039
    [8] 肖存英, 胡雄, 龚建村, 等. 中国上空平流层准零风层的特征分析[J]. 空间科学学报, 2008, 28(3): 230-235 doi: 10.11728/cjss2008.03.230

    XIAO Cunying, HU Xiong, GONG Jiancun, et al. Analysis of the characteristics of the stratospheric quasi-zero wind layer over China[J]. Chinese Journal of Space Science, 2008, 28(3): 230-235 doi: 10.11728/cjss2008.03.230
    [9] 陈柏青, 刘毅, 刘靓珂, 等. 低纬地区平流层准零风层时空分布特征分析[J]. 气候与环境研究, 2018, 23(6): 657-669 doi: 10.3878/j.issn.1006-9585.2018.17086

    CHEN Baiqing, LIU Yi, LIU Liangke, et al. Characteristics of spatial-temporal distribution of the stratospheric quasi-zero wind layer in low-latitude regions[J]. Climatic and Environmental Research, 2018, 23(6): 657-669 doi: 10.3878/j.issn.1006-9585.2018.17086
    [10] 李魁, 邓小龙, 杨希祥, 等. 基于本征正交分解的平流层风场建模与预测[J]. 北京航空航天大学学报, 2018, 44(9): 2013-2020 doi: 10.13700/j.bh.1001-5965.2017.0685

    LI Kui, DENG Xiaolong, YANG Xixiang, et al. Modeling and prediction of stratospheric wind field based on proper orthogonal decomposition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 2013-2020 doi: 10.13700/j.bh.1001-5965.2017.0685
    [11] 冯慧, 刘强, 姜鲁华, 等. 临近空间环境对高空飞艇长时驻空影响研究进展[J]. 南京航空航天大学学报, 2017, 49(S1): 69-75

    FENG Hui, LIU Qiang, JIANG Luhua, et al. Research progress of near-space environment effects on high altitude airship long duration flight[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(S1): 69-75
    [12] 邓小龙, 李魁, 于春锐, 等. 准零风层新型临近空间浮空器区域驻留性能[J]. 国防科技大学学报, 2019, 41(1): 5-12 doi: 10.11887/j.cn.201901002

    DENG Xiaolong, LI Kui, YU Chunrui, et al. Station-keeping performance of novel near-space aerostat in quasi-zero wind layer[J]. Journal of National University of Defense Technology, 2019, 41(1): 5-12 doi: 10.11887/j.cn.201901002
    [13] 任一鹏, 田中伟, 吴子牛. 飞艇空气动力学及其相关问题[J]. 航空学报, 2010, 31(3): 431-443

    REN Yipeng, TIAN Zhongwei, WU Ziniu. Some aerodynamics problems of airship[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3): 431-443
    [14] 李德富, 夏新林, 杨小川. 球形浮空器升空过程中的瞬态热响应[J]. 工程热物理学报, 2009, 30(1): 108-110 doi: 10.3321/j.issn:0253-231X.2009.01.029

    LI Defu, XIA Xinlin, YANG Xiaochuan. Transient thermal response of spherical aerostats in rising process[J]. Journal of Engineering Thermophysics, 2009, 30(1): 108-110 doi: 10.3321/j.issn:0253-231X.2009.01.029
    [15] ZHAO D, LIU D X, ZHU M. A surrogate model for thermal characteristics of stratospheric airship[J]. Advances in Space Research, 2018, 61(12): 2989-3001 doi: 10.1016/j.asr.2018.03.036
    [16] 徐向华, 程雪涛, 梁新刚. 平流层浮空器的热数值分析[J]. 清华大学学报(自然科学版), 2009, 49(11): 1848-1851 doi: 10.3321/j.issn:1000-0054.2009.11.027

    XU Xianghua, CHENG Xuetao, LIANG Xingang. Thermal analysis of a stratospheric airship[J]. Journal of Tsinghua University (Science and Technology), 2009, 49(11): 1848-1851 doi: 10.3321/j.issn:1000-0054.2009.11.027
    [17] 方贤德, 王伟志, 李小建. 平流层飞艇热仿真初步探讨[J]. 航天返回与遥感, 2007, 28(2): 5-9 doi: 10.3969/j.issn.1009-8518.2007.02.002

    FANG Xiande, WANG Weizhi, LI Xiaojian. A study of thermal simulation of stratospheric airships[J]. Spacecraft Recovery & Remote Sensing, 2007, 28(2): 5-9 doi: 10.3969/j.issn.1009-8518.2007.02.002
    [18] 张衍垒, 李兆杰, 王旭巍, 等. 平流层飞艇表面太阳辐射量分布的分析研究[J]. 太阳能学报, 2020, 41(12): 110-116

    ZHANG Yanlei, LI Zhaojie, WANG Xuwei, et al. Study on distribution of solar radiation distribution on stratospheric airship surface[J]. Acta Energiae Solaris Sinica, 2020, 41(12): 110-116
  • 加载中
图(3)
计量
  • 文章访问数:  379
  • HTML全文浏览量:  94
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-15
  • 录用日期:  2022-01-13
  • 修回日期:  2022-05-14
  • 网络出版日期:  2022-09-26

目录

    /

    返回文章
    返回