留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LEO空间碎片甚短弧角度数据初轨确定方法对比

雷祥旭 夏胜夫 杨洋 王啸臻 张郑元 李振伟 桑吉章

雷祥旭, 夏胜夫, 杨洋, 王啸臻, 张郑元, 李振伟, 桑吉章. LEO空间碎片甚短弧角度数据初轨确定方法对比[J]. 空间科学学报, 2022, 42(5): 984-990. doi: 10.11728/cjss2022.05.211026108
引用本文: 雷祥旭, 夏胜夫, 杨洋, 王啸臻, 张郑元, 李振伟, 桑吉章. LEO空间碎片甚短弧角度数据初轨确定方法对比[J]. 空间科学学报, 2022, 42(5): 984-990. doi: 10.11728/cjss2022.05.211026108
LEI Xiangxu, XIA Shengfu, YANG Yang, WANG Xiaozhen, ZHANG Zhengyuan, LI Zhenwei, SANG Jizhang. Comparison of Initial Orbit Determination Methods with Very-Short-Arc Angle Observations from LEO Space Debris (in Chinese). Chinese Journal of Space Science, 2022, 42(5): 984-990 doi: 10.11728/cjss2022.05.211026108
Citation: LEI Xiangxu, XIA Shengfu, YANG Yang, WANG Xiaozhen, ZHANG Zhengyuan, LI Zhenwei, SANG Jizhang. Comparison of Initial Orbit Determination Methods with Very-Short-Arc Angle Observations from LEO Space Debris (in Chinese). Chinese Journal of Space Science, 2022, 42(5): 984-990 doi: 10.11728/cjss2022.05.211026108

LEO空间碎片甚短弧角度数据初轨确定方法对比

doi: 10.11728/cjss2022.05.211026108
基金项目: 国家自然科学基金项目(41874035),武汉大学地球空间环境与大地测量教育部重点实验室开放基金项目(21-01-02)和重庆市教委科学技术研究项目(KJQN202200701)共同资助
详细信息
    作者简介:

    雷祥旭:E-mail:xxlei@whu.edu.cn

  • 中图分类号: P228,V412.4+1

Comparison of Initial Orbit Determination Methods with Very-Short-Arc Angle Observations from LEO Space Debris

  • 摘要: 光学观测是空间目标观测中最常见的一种观测方式。采用扫描模式工作时光学观测得到的观测弧段弧长通常很短,有时甚至不到被观测空间目标运行周期的1%,这样的角度数据被称为甚短弧角度数据。基于近圆LEO空间碎片地基实测场景,研究比较仅利用角度数据进行初始轨道确定常用方法的性能差异,分析观测弧长对不同初轨确定算法的定轨成功率和误差的影响,为初轨确定工作提供参考。对比分析了常用的几种方法,包括Laplace方法、Gauss方法、Gooding方法和近几年提出的距离搜索算法等。大规模实测数据处理结果显示,距离搜索算法的成功率高于90%,初轨半长轴统计误差仅为25 km。初轨结果表明,距离搜索算法定轨成功率高于其他算法。研究成果可为解决空间碎片初轨确定问题提供参考。

     

  • 图  1  仿真观测LEO目标轨道近地点高度与偏心率分布

    Figure  1.  Orbit distributions of LEO objects for generating simulated observations

    图  2  空间目标观测弧段数目和观测数据弧长累计分布

    Figure  2.  Arc number of the space objects and the accumulated ratio of the arcs with different length

    图  3  地基光电阵观测到的目标轨道参数分布(近地点高度、倾角与空间目标数量)

    Figure  3.  Distribution of the orbit elements of the space objects obtained by the ground-based EO array (Altitude of the perigee,inclination and the number of space objects)

    表  1  仿真地基监测LEO目标10~30 s弧长数据初轨结果

    Table  1.   IOD results of the arcs with length ranging from 10~30 s of LEO objects with ground-based observations

    方法观测误差
    RMS/( " )
    成功率/(%)半长轴误差
    /km
    Gauss096.050
    0.5 92.580
    540.04000
    1032.55000
    Laplace092.5170
    0.541.7220
    52.5250
    100.81270
    Gooding097.555
    0.564.2345
    58.3800
    104.2830
    下载: 导出CSV

    表  2  仿真地基监测LEO目标30~60 s弧长数据初轨结果

    Table  2.   IOD results of the arcs with length ranging from 30~60 s of LEO objects with ground-based observations

    方法观测误差
    RMS/( " )
    成功率/(%)半长轴误差
    /km
    Gauss0100.050
    0.592.560
    585.01500
    1080.04500
    Laplace029.2300
    0.535.0320
    521.7290
    1010.8260
    Gooding096.650
    0.595.8280
    556.7300
    1030.8300
    下载: 导出CSV

    表  3  识别出的空间目标和观测弧段数量

    Table  3.   Number of the identified space objects and the arcs

    日期观测弧段
    数量
    识别出所属目
    标的弧段数量
    识别出的空
    间目标数量
    2017–08–24410034581299
    2017–08–2516261396594
    2017–08–26489441631587
    下载: 导出CSV

    表  4  地基光电阵监测LEO目标观测数据初轨结果

    Table  4.   IOD results of space objects observed by the ground-based EO array

    方法弧长/s成功率/(%)半长轴误差/km
    Gauss10~3052.51800
    30~6094.4600
    Laplace10~308.6250
    30~6027.6260
    Gooding10~3033.1265
    30~6081.2285
    RS method10~3072.1050
    30~6087.8625
    下载: 导出CSV

    表  5  仿真天基监测LEO目标10~30 s弧长数据初轨确定结果

    Table  5.   IOD results of the arcs with length ranging in 10~30 s of LEO objects with space-based observations

    方法观测误差
    RMS/(")
    成功率/(%)半长轴误差/km
    Gauss072.1430
    0.557.6500
    534.72000
    1029.54000
    Gooding080.1190
    0.567.2290
    554.6570
    1047.8780
    下载: 导出CSV

    表  6  仿真天基监测LEO目标30~60 s弧长数据初轨确定结果

    Table  6.   IOD results of the arcs with length ranging in 30~60 s of LEO objects with space-based observations

    方法观测误差
    RMS/(")
    成功率/(%)半长轴误差/km
    Gauss069.1130
    0.568.2150
    561.0500
    1059.0800
    Gooding098.0130
    0.590.0230
    558.8380
    1032.4522
    下载: 导出CSV
  • [1] 白显宗, 陈磊, 张翼, 等. 空间目标碰撞预警技术研究综述[J]. 宇航学报, 2013, 34(8): 1027-1039

    BAI Xianzong, CHEN Lei, ZHANG Yi, et al. Survey on collision assessment and warning techniques for space object[J]. Journal of Astronautics, 2013, 34(8): 1027-1039
    [2] 王晓伟, 刘静, 崔双星. 一种应用于空间碎片演化模型的碰撞概率算法[J]. 宇航学报, 2019, 40(4): 482-488

    WANG Xiaowei, LIU Jing, CUI Shuangxing. A collision probability estimation algorithm used in space debris evolutionary model[J]. Journal of Astronautics, 2019, 40(4): 482-488
    [3] 于大腾, 王华, 孙福煜. 考虑潜在威胁区的航天器最优规避机动策略[J]. 航空学报, 2017, 38(1): 281

    YU Dateng, WANG Hua, SUN Fuyu. Optimal evasive maneuver strategy with potential threatening area being considered[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1): 281
    [4] 常浩, 金星, 洪延姬, 等. 地基激光清除空间碎片过程建模与仿真[J]. 航空学报, 2012, 33(6): 994-1001

    CHANG Hao, JIN Xing, HONG Yanji, et al. Modeling and simulation on ground-based lasers cleaning space debris[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6): 994-1001
    [5] 金星, 洪延姬, 常浩. 地基激光清除椭圆轨道空间碎片特性的计算分析[J]. 航空学报, 2013, 34(9): 2064-2073

    JIN Xing, HONG Yanji, CHANG Hao. Simulation analysis of removal of elliptic orbit space debris using ground-based laser[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2064-2073
    [6] 吴连大. 人造卫星与空间碎片的轨道和探测[M]. 北京: 中国科学技术出版社, 2011: 4-6

    WU Lianda. Orbit and Detection of Satellite and Space Debris[M]. Beijing: China Science and Technology Press, 2011: 4-6
    [7] LIAO Ying, LIU Guangming, WEN Yuanlan, et al. Passive Tracking Technology of Non-cooperative Space Target and Application[M]. Beijing: National Defense Industry Press, 2015: 10-13
    [8] 刘林, 王建峰. 关于初轨计算[J]. 飞行器测控学报, 2004, 23(3): 41-45,50

    LIU Lin, WANG Jianfeng. On initial orbit determina-tion[J]. Journal of Spacecraft TT& C Technology, 2004, 23(3): 41-45,50
    [9] 刘林, 张巍. 关于各种类型数据的初轨计算方法[J]. 飞行器测控学报, 2009, 28(3): 70-76

    LIU Lin, ZHANG Wei. Initial orbit determination for different data types[J]. Journal of Spacecraft TT& C Techno-logy, 2009, 28(3): 70-76
    [10] 王秀红, 李俊峰, 王彦荣. 天基照相机监测空间目标定轨方法及精度分析[J]. 光学精密工程, 2013, 21(6): 1394-1403 doi: 10.3788/OPE.20132106.1394

    WANG Xiuhong, LI Junfeng, WANG Yanrong. Orbit determination and precision analysis of space object with space-based camera[J]. Optics and Precision Engineering, 2013, 21(6): 1394-1403 doi: 10.3788/OPE.20132106.1394
    [11] 杨彪, 李迎春, 张廷华. 相机阵列在空间目标初轨确定中的应用[J]. 光学学报, 2019, 39(2): 0204002 doi: 10.3788/AOS201939.0204002

    YANG Biao, LI Yingchun, ZHANG Tinghua. Application of camera array in initial orbit determination of space targets[J]. Acta Optical Sinica, 2019, 39(2): 0204002 doi: 10.3788/AOS201939.0204002
    [12] 刘磊. 基于天基监视的空间目标测向初轨确定研究[D]. 长沙: 国防科学技术大学, 2010: 70-76

    LIU Lei. Study on the Initial Orbit Determination of Space Targets with Space-based Surveillance[D]. Changsha: National University of Defense Technology, 2010: 70-76
    [13] GOODING R H. A New Procedure for Orbit Determination Based on Three Lines of Sight (Angles Only)[R]. Farnborough: Defence Research Agency, 1993
    [14] ESCOBAL P R. Methods of Orbit Determination[M]. New York: John Wiley & Sons, 1965
    [15] ANSALONE L, CURTI F. A genetic algorithm for Initial Orbit Determination from a too short arc optical observation[J]. Advances in Space Research, 2013, 52(3): 477-489 doi: 10.1016/j.asr.2013.04.004
    [16] BRIGGS R E, SLOWLEY J W. An Iterative Method of Orbit Determination from Three Observations of A Nearby Satellite[R]. Astrophysical Observatory, Smithsonian Institution, SAO Special Report, 1959
    [17] VALLADO D A. Evaluating Gooding Angles-only Orbit Determination of Space Based Space Surveillance Measurements[R]. USR 10-S4.5, In: Proceedings of the AAS George Born Astrodynamics Symposium, Boulder, CO, 2010
    [18] 章品, 桑吉章, 潘腾, 等. 应用距离搜索的低轨空间碎片初始轨道确定方法[J]. 航天器工程, 2017, 26(2): 22-28

    ZHANG Pin, SANG Jizhang, PAN Teng, et al. Initial orbit determination method based on range searching for LEO space debris[J]. Spacecraft Engineering, 2017, 26(2): 22-28
    [19] 陈俊宇, 李彬, 陈立娟, 等. 联合多个两行根数进行轨道预报[J]. 红外与激光工程, 2016, 45(S2): S229001

    CHEN Junyu, LI Bin, CHEN Lijuan, et al. Orbit prediction from combining multiple two-line elements[J]. Infrared and Laser Engineering, 2016, 45(S2): S229001
    [20] 陈冰儿, 熊建宁. 空间碎片天基光学观测平台设计[J]. 天文学报, 2016, 57(2): 228-240

    CHEN Binger, XIONG Jiannan. The platform design of space-based optical observations of space debris[J]. Acta Astronomica Sinica, 2016, 57(2): 228-240
    [21] 牛照东, 汪琳, 段宇, 等. 国外地球同步轨道目标天基光学监视策略[J]. 中国光学, 2017, 10(3): 310-320 doi: 10.3788/co.20171003.0310

    NIU Zhaodong, WANG Lin, DUAN Yu, et al. Review of foreign space-based optical surveillance strategies for GEO objects[J]. Chinese Optics, 2017, 10(3): 310-320 doi: 10.3788/co.20171003.0310
    [22] 桑吉章, 陈立娟, 李彬, 等. 空间目标轨道信息软件平台的建设[J]. 航天器环境工程, 2016, 33(1): 1-6

    SANG Jizhang, CHEN Lijuan, LI Bin, et al. Development of space object orbit information software platform[J]. Spacecraft Environment Engineering, 2016, 33(1): 1-6
    [23] 雷祥旭, 桑吉章, 李振伟. 长春地基光电阵观测数据初步分析[J]. 测绘地理信息, 2019, 44(1): 41-44 doi: 10.14188/j.2095-6045.2018265

    LEI Xiangxu, SANG Jizhang, LI Zhenwei. Preliminary analysis of observations obtained from ground-based electro-optical sensor array at Changchun[J]. Journal of Geomatics, 2019, 44(1): 41-44 doi: 10.14188/j.2095-6045.2018265
  • 加载中
图(3) / 表(6)
计量
  • 文章访问数:  316
  • HTML全文浏览量:  124
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-26
  • 录用日期:  2022-04-11
  • 修回日期:  2022-05-07
  • 网络出版日期:  2022-09-22

目录

    /

    返回文章
    返回