留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

IMF北向时太阳风粒子向磁层输运的试验粒子模拟研究

赵明现

赵明现. IMF北向时太阳风粒子向磁层输运的试验粒子模拟研究[J]. 空间科学学报, 2022, 42(6): 1068-1078. doi: 10.11728/cjss2022.06.210721078
引用本文: 赵明现. IMF北向时太阳风粒子向磁层输运的试验粒子模拟研究[J]. 空间科学学报, 2022, 42(6): 1068-1078. doi: 10.11728/cjss2022.06.210721078
ZHAO Mingxian. Test Particle Simulation of Solar Wind Transport into the Magnetosphere during Northward IMF (in Chinese). Chinese Journal of Space Science, 2022, 42(6): 1068-1078 doi: 10.11728/cjss2022.06.210721078
Citation: ZHAO Mingxian. Test Particle Simulation of Solar Wind Transport into the Magnetosphere during Northward IMF (in Chinese). Chinese Journal of Space Science, 2022, 42(6): 1068-1078 doi: 10.11728/cjss2022.06.210721078

IMF北向时太阳风粒子向磁层输运的试验粒子模拟研究

doi: 10.11728/cjss2022.06.210721078
基金项目: 国家自然科学基金项目资助(42274217,41774195)
详细信息
    作者简介:

    赵明现:E-mail:zhaomx@cma.gov.cn

  • 中图分类号: P353

Test Particle Simulation of Solar Wind Transport into the Magnetosphere during Northward IMF

  • 摘要: 以ACE卫星实时观测数据驱动的全球磁流体模拟为背景场,选取2003年10月22-24日行星际磁场(IMF)持续北向的事件,使用试验粒子方法,对太阳风粒子向磁层输运的过程进行模拟研究,分析北向IMF下太阳风粒子注入磁层过程中粒子在磁层内的空间分布和时间演化特征。IMF北向期间,进入环电流区域的粒子在晨侧区域的密度大于昏侧,且晨侧的粒子分布范围更广。背阳面磁鞘中的太阳风粒子可以通过低纬边界层进入磁层,但很难通过南北侧磁层顶进入磁层。进入磁尾的太阳风粒子聚集形成冷而密的等离子体片(CDPS),模拟中CDPS的空间分布和密度大小与观测数据符合。在IMF长时间北向期间,磁尾的粒子数量呈现随时间增长的趋势,并存在约20 min的小幅度准周期变化和约5~6 h的较大幅度的准周期变化。

     

  • 图  1  2003年10月22-25日ACE卫星观测到的太阳风和IMF数据

    Figure  1.  ACE satellite observation data on 22-25 October 2003

    图  2  使用不同时间步长计算得到的粒子运动轨迹

    Figure  2.  Trajectories of a single particle using different settings of time step

    图  3  Geotail卫星观测粒子密度与模拟结果对比

    Figure  3.  Comparison between the particle density observed by Geotail and that from our simulation

    图  4  太阳风粒子在磁层中的三维密度分布(黑色实线为磁层顶位置,白色实线为弓激波位置)

    Figure  4.  Three dimensional density distribution of solar wind particles in magnetosphere (Black solid lines mark the location of magnetopause, and the white solid lines mark the location of bow shock)

    图  5  太阳风粒子在磁层中的三维密度分布

    Figure  5.  Three dimensional density distribution of solar wind particles in magnetosphere

    图  6  太阳风粒子在xy平面的密度分布

    Figure  6.  Density distribution of solar wind particles in xy plane

    图  7  太阳风粒子在xz平面的密度分布

    Figure  7.  Density distribution of solar wind particles in xz plane

    图  8  太阳风粒子在 x = –20 Re处的yz平面的密度分布

    Figure  8.  Density distribution of solar wind particles in yz plane at x = –20 Re

    图  9  磁尾选定区域(–40 Re < x < –10 Re , –15 Re < y < 15 Re , –10 Re < z < 10 Re )内的粒子平均密度和密度最大值在IMF北向期间随时间的变化

    Figure  9.  Variation of total particle average density and particle max density maximum during northward IMF in the selected magnetotail region (–40 Re < x < –10 Re , –15 Re < y < 15 Re , –10 Re < z < 10 Re)

  • [1] WILLIAMS D J. Considerations of source, transport, acceleration/heating and loss processes responsible for geomagnetic tail particle populations[J]. Space Science Reviews, 1997, 80(1): 369-389 doi: 10.1023/A:1004938407531
    [2] MOORE T E, FOK M C, CHANDLER M O, et al. Plasma sheet and (nonstorm) ring current formation from solar and polar wind sources[J]. Journal of Geophysical Research, 2005, 110(A2): A02210 doi: 10.1029/2004JA010563
    [3] DING L. Test particle simulations of global transport in earth’s magnetosphere[D]. Alberta: University of Alberta, 2006
    [4] DUNGEY J W. Interplanetary magnetic field and the auroral zones[J]. Physical Review Letters, 1961, 6(2): 47-48 doi: 10.1103/PhysRevLett.6.47
    [5] NEWELL P T, SOTIRELIS T, LIOU K, et al. A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables[J]. Journal of Geophysical Research, 2007, 112(A1): A01206 doi: 10.1029/2006JA012015
    [6] SONG P, RUSSELL C T. Model of the formation of the low-latitude boundary layer for strongly northward interplanetary magnetic field[J]. Journal of Geophysical Research, 1992, 97(A2): 1411-1420 doi: 10.1029/91JA02377
    [7] PITOUT F, ESCOUBET C P, TAYLOR M G G T, et al. Overlapping ion structures in the mid-altitude cusp under northward IMF: signature of dual lobe reconnection?[J]. Annales Geophysicae, 2012, 30(3): 489-501 doi: 10.5194/angeo-30-489-2012
    [8] LU J Y, ZHANG H X, WANG M, et al. Energy transfer across the magnetopause under radial IMF conditions[J]. The Astrophysical Journal, 2021, 920(1): 52 doi: 10.3847/1538-4357/ac15f4
    [9] AXFORD W I, HINES C O. A unifying theory of high-latitude geophysical phenomena and geomagnetic storms[J]. Canadian Journal of Physics, 1961, 39(10): 1433-1464 doi: 10.1139/p61-172
    [10] KIVELSON M G, RUSSELL C T. Introduction to Space Physics[M]. Cambridge: Cambridge University Press, 1995
    [11] NEWELL P T, ONSAGER T. Earth’s Low-Latitude Boundary Layer[M]. Washington DC: American Geophysical Union, 2003
    [12] HASEGAWA H, FUJIMOTO M, TAKAGI K, et al. Single-spacecraft detection of rolled-up Kelvin-Helmholtz vortices at the flank magnetopause[J]. Journal of Geophysical Research, 2006, 111(A9): A09203 doi: 10.1029/2006JA011728
    [13] HASEGAWA H, FUJIMOTO M, PHAN T D, et al. Transport of solar wind into Earth’s magnetosphere through rolled-up Kelvin-Helmholtz vortices[J]. Nature, 2004, 430(7001): 755-758 doi: 10.1038/nature02799
    [14] CHASTON C, BONNELL J, MCFADDEN J P, et al. Turbulent heating and cross-field transport near the magnetopause from THEMIS[J]. Geophysical Research Letters, 2008, 35(17): L17S08 doi: 10.1029/2008GL033601
    [15] LIN Y, JOHNSON J R, WANG X Y. Three-dimensional mode conversion associated with kinetic Alfvén Waves[J]. Physical Review Letters, 2012, 109(12): 125003 doi: 10.1103/PhysRevLett.109.125003
    [16] LEMAIRE J, ROTH M. Penetration of solar wind plasma elements into the magnetosphere[J]. Journal of Atmospheric and Terrestrial Physics, 1978, 40(3): 331-335 doi: 10.1016/0021-9169(78)90049-1
    [17] ARCHER M O, HORBURY T S. Magnetosheath dynamic pressure enhancements: occurrence and typical properties[J]. Annales Geophysicae, 2013, 31(2): 319-331 doi: 10.5194/angeo-31-319-2013
    [18] WING S, JOHNSON J R, CHASTON C C, et al. Review of solar wind entry into and transport within the plasma sheet[J]. Space Science Reviews, 2014, 184(1): 33-86 doi: 10.1007/s11214-014-0108-9
    [19] MARCHAND R. Test-particle simulation of space plasmas[J]. Communications in Computational Physics, 2010, 8(3): 471-483 doi: 10.4208/cicp.201009.280110a
    [20] ASHOUR-ABDALLA M, EL-ALAOUI M, PEROOMIAN V, et al. Ion sources and acceleration mechanisms inferred from local distribution functions[J]. Geophysical Research Letters, 1997, 24(8): 955-958 doi: 10.1029/97GL00060
    [21] SPEISER T W. Particle trajectories in a model current sheet, based on the open model of the magnetosphere, with applications to auroral particles[J]. Journal of Geophysical Research, 1965, 70(7): 1717-1728 doi: 10.1029/JZ070i007p01717
    [22] DELCOURT D C. Particle acceleration by inductive electric fields in the inner magnetosphere[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2002, 64(5/6): 551-559 doi: 10.1016/S1364-6826(02)00012-3
    [23] LI X L, BAKER D N, TEMERIN M, et al. Simulation of dispersionless injections and drift echoes of energetic electrons associated with substorms[J]. Geophysical Research Letters, 1998, 25(20): 3763-3766 doi: 10.1029/1998GL900001
    [24] LI X L, SARRIS T E, BAKER D N, et al. Simulation of energetic particle injections associated with a substorm on August 27, 2001[J]. Geophysical Research Letters, 2003, 30(1): 1004 doi: 10.1029/2002GL015967
    [25] 唐鹏举, 徐荣栏, 王赤. 能量粒子进入磁层的数值模拟研究[J]. 空间科学学报, 2008, 28(4): 283-287 doi: 10.11728/cjss2008.04.283

    TANG Pengju, XU Ronglan, WANG Chi. Simulation on the penetration of energetic particles into the magnetosphere[J]. Chinese Journal of Space Science, 2008, 28(4): 283-287 doi: 10.11728/cjss2008.04.283
    [26] LI D, MARCHAND R, KABIN K, et al. Modeling Solar Wind particles transport into the Plasma Sheet with test particle simulation[EB/OL]. (2005-03-31)[2022-11-02]. http://lucid.igpp.ucla.edu/lessons/ess265/2005/7th-ISSS/CONTENTS/DATA_PDF/P-2-36.PDF
    [27] 郭九苓, 沈超, 刘振兴. IMF北向与南向时地球磁尾等离子片粒子注入机制[J]. 科学通报, 2012, 57(34): 3295-3300 doi: 10.1360/972012-447

    GUO Jiuling, SHEN Chao, LIU Zhenxing. Simulation and comparison of particles entering the plasma sheet under northward and southward IMF conditions[J]. Chinese Science Bulletin, 2012, 57(34): 3295-3300 doi: 10.1360/972012-447
    [28] 曹鑫, 吕建永, 杨志良, 等. 三维试验粒子轨道法在磁层粒子全球输运中的应用[J]. 空间科学学报, 2013, 33(3): 240-249 doi: 10.11728/cjss2013.03.240

    CAO Xin, LÜ Jianyong, YANG Zhiliang, et al. Trajectory method of 3D test particles in global transport in magnetosphere[J]. Chinese Journal of Space Science, 2013, 33(3): 240-249 doi: 10.11728/cjss2013.03.240
    [29] PEROOMIAN V, EL-ALAOUI M. The storm-time access of solar wind ions to the nightside ring current and plasma sheet[J]. Journal of Geophysical Research, 2008, 113(A6): A06215 doi: 10.1029/2007JA012872
    [30] BIRDSALL C K, LANGDON A B. Plasma Physics Via Computer Simulation[M]. Boca Raton: CRC Press, 1991
    [31] SORATHIA K A, MERKIN V G, UKHORSKIY A Y, et al. Energetic particle loss through the magnetopause: a combined global MHD and test-particle study[J]. Journal of Geophysical Research, 2017, 122(9): 9329-9343 doi: 10.1002/2017JA024268
    [32] PULKKINEN T I, TSYGANENKO N A, FRIEDEL R H W. The Inner Magnetosphere: Physics and Modeling[M]. Washington DC: American Geophysical Union, 2005. DOI: 10.1029/GM155
    [33] BAI S C, SHI Q Q, TIAN A M, et al. Spatial distribution and semiannual variation of cold-dense plasma sheet[J]. Journal of Geophysical Research, 2018, 123(1): 464-472 doi: 10.1002/2017JA024565
    [34] PALMROTH M, PULKKINEN T I, JANHUNEN P, et al. Stormtime energy transfer in global MHD simulation[J]. Journal of Geophysical Research, 2003, 108(A1): 1048 doi: 10.1029/2002JA009446
    [35] FUJIMOTO M, TERASAWA T, MUKAI T, et al. Plasma entry from the flanks of the near-Earth magnetotail: Geotail observations[J]. Journal of Geophysical Research, 1998, 103(A3): 4391-4408 doi: 10.1029/97JA03340
    [36] WING S, NEWELL P T. 2 D plasma sheet ion density and temperature profiles for northward and southward IMF[J]. Geophysical Research Letters, 2002, 29(9): 1307 doi: 10.1029/2001GL013950
    [37] SORATHIA K A, MERKIN V G, UKHORSKIY A Y, et al. Solar wind ion entry into the magnetosphere during northward IMF[J]. Journal of Geophysical Research, 2019, 124(7): 5461-5481 doi: 10.1029/2019JA026728
    [38] YAO Y, CHASTON C C, GLASSMEIER K H, et al. Electromagnetic waves on ion gyro-radii scales across the magnetopause[J]. Geophysical Research Letters, 2011, 38(9): L09102 doi: 10.1029/2011GL047328
    [39] LI W H, RAEDER J, DORELLI J, et al. Plasma sheet formation during long period of northward IMF[J]. Geophysical Research Letters, 2005, 32(12): L12S08 doi: 10.1029/2004GL021524
    [40] TERASAWA T, FUJIMOTO M, MUKAI T, et al. Solar wind control of density and temperature in the near-Earth plasma sheet: WIND/GEOTAIL collaboration[J]. Geophysical Research Letters, 1997, 24(8): 935-938 doi: 10.1029/96GL04018
    [41] ØIEROSET M, RAEDER J, PHAN T D, et al. Global cooling and densification of the plasma sheet during an extended period of purely northward IMF on October 22-24, 2003[J]. Geophysical Research Letters, 2005, 32(12): L12S07 doi: 10.1029/2004GL021523
    [42] SCKOPKE N, PASCHMANN G, HAERENDEL G, et al. Structure of the low-latitude boundary layer[J]. Journal of Geophysical Research, 1981, 86(A4): 2099-2110 doi: 10.1029/JA086iA04p02099
    [43] 郭九苓, 沈超, 刘振兴. MHD模拟磁尾横断面结构与太阳风粒子注入机制[J]. 科学通报, 2014, 59(4/5): 345-350 doi: 10.2360/972012-1852

    GUO Jiuling, SHEN Chao, LIU Zhenxing. Simulation of the cross sections of the magnetotail and particle transferred into the plasma sheet under north- and southward IMF conditions[J]. Chinese Science Bulletin, 2014, 59(4/5): 345-350 doi: 10.2360/972012-1852
  • 加载中
图(9)
计量
  • 文章访问数:  254
  • HTML全文浏览量:  64
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-18
  • 录用日期:  2021-09-27
  • 修回日期:  2022-03-15
  • 网络出版日期:  2022-11-09

目录

    /

    返回文章
    返回