留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双层博弈的多臂在轨服务航天器路径规划

高添 吴云华 张枭 岳程斐

高添, 吴云华, 张枭, 岳程斐. 基于双层博弈的多臂在轨服务航天器路径规划[J]. 空间科学学报, 2022, 42(6): 1230-1238. doi: 10.11728/cjss2022.06.yg32
引用本文: 高添, 吴云华, 张枭, 岳程斐. 基于双层博弈的多臂在轨服务航天器路径规划[J]. 空间科学学报, 2022, 42(6): 1230-1238. doi: 10.11728/cjss2022.06.yg32
GAO Tian, WU Yunhua, ZHANG Xiao, YUE Chengfei. Two-level Game Based Multi-arm On-orbit Servicing Spacecraft Path Planning (in Chinese). Chinese Journal of Space Science, 2022, 42(6): 1230-1238 doi: 10.11728/cjss2022.06.yg32
Citation: GAO Tian, WU Yunhua, ZHANG Xiao, YUE Chengfei. Two-level Game Based Multi-arm On-orbit Servicing Spacecraft Path Planning (in Chinese). Chinese Journal of Space Science, 2022, 42(6): 1230-1238 doi: 10.11728/cjss2022.06.yg32

基于双层博弈的多臂在轨服务航天器路径规划

doi: 10.11728/cjss2022.06.yg32
基金项目: 国家自然科学基金项目(62003115,61973153)和深圳市高校稳定支持计划项目(GXWD20201230155427003-20200821170719001)共同资助
详细信息
    作者简介:

    高添:E-mail:22S061022@stu.hit.edu.cn

    通讯作者:

    岳程斐,E-mail:yuechengfei@hit.edu.cn

  • 中图分类号: V42,TP241

Two-level Game Based Multi-arm On-orbit Servicing Spacecraft Path Planning

  • 摘要: 针对在轨服务多臂航天器系统高精度的位姿协同要求及其运动过程中的避障约束,提出一种基于机械臂末端(腕关节)和肘关节的双层博弈多臂路径规划方法。研究建立了多臂运动学模型,在博弈论基础上建立多臂的博弈模型;给出了双层博弈的基本算法流程及其纳什均衡解的求解策略;以动目标多臂围捕为场景进行仿真分析,验证所提出算法末端精确跟踪抓取和肘部避障能力的有效性和实用性。所得结果可为多臂在轨服务航天器的智能化路径规划与控制提供新的解决方案。

     

  • 图  1  多臂航天器整体构型及坐标系定义

    Figure  1.  Configuration of the multi-arm spacecraft and the definition of the coordinates

    图  2  机械臂臂型角

    Figure  2.  Arm angle of manipulator

    图  3  由19个可能动作构成的机械臂追捕博弈策略集

    Figure  3.  Strategy set of the manipulator tracking game formed by the 19 potential actions

    图  4  机械臂肘关节对心夹角

    Figure  4.  Angle against the center of manipulator’s elbow joint

    图  5  双层博弈算法流程

    Figure  5.  Flow chart of the two-level game algorithm

    图  6  机械臂末端追捕博弈轨迹

    Figure  6.  Trajectory diagram of the end effector in the hunting game

    图  7  机械臂末端至目标的距离

    Figure  7.  Distance between multi-manipulator end-effectors and target

    图  8  部分机械臂双层博弈行为

    Figure  8.  Partial schematic diagram of the manipulators in the two-level game

    图  9  各机械臂肘关节均匀分布指标

    Figure  9.  Index of the distribution of elbow joint

    表  1  机械臂DH参数

    Table  1.   DH parameters of the manipulator

    编号$i$αi/(°)${{{a_i}} / {\text{m}}}$${{{d_i}} / {\text{m}}}$θi/(°)
    1–9000${\theta _1}$
    29000${\theta _2}$
    3–9001${\theta _3}$
    49000${\theta _4}$
    59001${\theta _5}$
    69000${\theta _6}$
    7000${\theta _7}$
    下载: 导出CSV

    表  2  机械臂仿真初始参数

    Table  2.   Initial parameters of the simulation

    臂序号根部坐标/m初始构型/(°)
    1(0,0.4,0)[0,90,90,45,90,90,0]
    2(–0.4,0,0)[0,180,90,45,90,90,0]
    3(0,–0.4,0)[0,–90,90,45,90,90,0]
    4(0.4,0,0)[0,0,90,45,90,90,0]
    下载: 导出CSV
  • [1] FLORES-ABAD A, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences, 2014, 68: 1-26 doi: 10.1016/j.paerosci.2014.03.002
    [2] LI W J, CHENG D Y, LIU X G, et al. On-orbit service (OOS) of spacecraft: a review of engineering developments[J]. Progress in Aerospace Sciences, 2019, 108: 32-120 doi: 10.1016/j.paerosci.2019.01.004
    [3] 徐文福. 空间机器人目标捕获的路径规划与实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2007

    XU Wenfu. Path Planning and Experiment Study of Space Robot for Target Capturing[D]. Harbin: Harbin Institute of Technology, 2007
    [4] 岳程斐, 张枭, 王宏旭, 等. 在轨操控机器人拓邻域搜索三维路径规划[J]. 宇航学报, 2022, 43(2): 206-213 doi: 10.3873/j.issn.1000-1328.2022.02.009

    YUE Chengfei, ZHANG Xiao, WANG Hongxu, et al. Three-dimensional path planning of on-orbit manipulation robot based on neighborhood continuation search[J]. Journal of Astronautics, 2022, 43(2): 206-213 doi: 10.3873/j.issn.1000-1328.2022.02.009
    [5] HOYT R P, CUSHING J I, SLOSTAD J T, et al. SpiderFab: an architecture for self-fabricating space systems[C]//AIAA SPACE 2013 Conference and Exposition. San Diego, CA: AIAA, 2013. DOI: 10.2514/6.2013-5509
    [6] WARREN C W. Global path planning using artificial potential fields[C]//1989 International Conference on Robotics and Automation. Scottsdale, AZ, USA: IEEE, 1989. DOI: 10.1109/ROBOT.1989.100007
    [7] KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[M]//COX I J, WILFONG G T. Autonomous Robot Vehicles. New York: Springer, 1986. DOI: 10.1007/978-1-4613-8997-2_29
    [8] PURIYANTO R D, WAHYUNGGORO O, CAHYADI A I. Improved artificial potential field algorithm based multi-local minimum solution[J]. Engineering Letters, 2021, 29(3): 1277-1286
    [9] BOHLIN R, KAVRAKI L E. Path planning using lazy PRM[C]//Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings. San Francisco, CA, USA: IEEE, 2000. DOI: 10.1109/ROBOT.2000.844107
    [10] 贾庆轩, 陈钢, 孙汉旭, 等. 基于A*算法的空间机械臂避障路径规划[J]. 机械工程学报, 2010, 46(13): 109-115 doi: 10.3901/JME.2010.13.109

    JIA Qingxuan, CHEN Gang, SUN Hanxu, et al. Path planning for space manipulator to avoid obstacle based on A* algorithm[J]. Journal of Mechanical Engineering, 2010, 46(13): 109-115 doi: 10.3901/JME.2010.13.109
    [11] DUCHOŇ F, BABINEC A, KAJAN M, et al. Path planning with modified a star algorithm for a mobile robot[J]. Procedia Engineering, 2014, 96: 59-69 doi: 10.1016/j.proeng.2014.12.098
    [12] YAO J F, LIN C, XIE X B, et al. Path planning for virtual human motion using improved A* star algorithm[C]//2010 Seventh International Conference on Information Technology: New Generations. Las Vegas, NV, USA: IEEE, 2010. DOI: 10.1109/ITNG.2010.53
    [13] GUO Y N, PAN Q, SUN Q, et al. Cooperative game-based multi-agent path planning with obstacle avoidance[C]//2019 IEEE 28th International Symposium on Industrial Electronics (ISIE). Vancouver, BC, Canada: IEEE, 2019. DOI: 10.1109/ISIE.2019.8781205
    [14] SHEN D, CHEN G S, CRUZ J B, et al. A game theoretic data fusion aided path planning approach for cooperative UAV ISR[C]//2008 IEEE Aerospace Conference. Big Sky, MT, USA: IEEE, 2008. DOI: 10.1109/AERO.2008.4526563
    [15] LEE D S, PERIAUX J, GONZALEZ L F. UAS mission path planning system (MPPS) using hybrid-game coupled to multi-objective optimizer[J]. Journal of Dynamic Systems, Measurement, and Control, 2010, 132(4): 041005 doi: 10.1115/1.4001336
    [16] WANG S, WEN J Z, ZHOU D C, et al. A game-based fault-tolerant path planning algorithm for space manipulator[C]//2021 IEEE International Conference on Mechatronics and Automation (ICMA). Takamatsu, Japan: IEEE, 2021. DOI: 10.1109/ICMA52036.2021.9512817
    [17] SHIMIZU M, KAKUYA H, YOON W K, et al. Analytical inverse kinematic computation for 7-DOF redundant manipulators with joint limits and its application to redundancy resolution[J]. IEEE Transactions on Robotics, 2008, 24(5): 1131-1142 doi: 10.1109/TRO.2008.2003266
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  190
  • HTML全文浏览量:  97
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-28
  • 修回日期:  2022-09-19
  • 网络出版日期:  2022-11-25

目录

    /

    返回文章
    返回