留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宇宙黑暗时代探路者−鸿蒙计划

陈学雷 阎敬业 徐怡冬 邓丽 吴锋泉 武林 周莉 张晓峰 朱晓铖 杨中光 吴季

陈学雷, 阎敬业, 徐怡冬, 邓丽, 吴锋泉, 武林, 周莉, 张晓峰, 朱晓铖, 杨中光, 吴季. 宇宙黑暗时代探路者−鸿蒙计划[J]. 空间科学学报, 2023, 43(1): 43-59. doi: 10.11728/cjss2023.01.220104001
引用本文: 陈学雷, 阎敬业, 徐怡冬, 邓丽, 吴锋泉, 武林, 周莉, 张晓峰, 朱晓铖, 杨中光, 吴季. 宇宙黑暗时代探路者−鸿蒙计划[J]. 空间科学学报, 2023, 43(1): 43-59. doi: 10.11728/cjss2023.01.220104001
CHEN Xuelei, YAN Jingye, XU Yidong, DENG Li, WU Fengquan, WU Lin, ZHOU Li, ZHANG Xiaofeng, ZHU Xiaocheng, YANG Zhongguang, WU Ji. Discovering the Sky at the Longest Wavelength Mission-font-horizontal-scale:400%'>−A Pathfinder for Exploring the Cosmic Dark Ages (in Chinese). Chinese Journal of Space Science, 2023, 43(1): 43-59 doi: 10.11728/cjss2023.01.220104001
Citation: CHEN Xuelei, YAN Jingye, XU Yidong, DENG Li, WU Fengquan, WU Lin, ZHOU Li, ZHANG Xiaofeng, ZHU Xiaocheng, YANG Zhongguang, WU Ji. Discovering the Sky at the Longest Wavelength Mission-font-horizontal-scale:400%">−A Pathfinder for Exploring the Cosmic Dark Ages (in Chinese). Chinese Journal of Space Science, 2023, 43(1): 43-59 doi: 10.11728/cjss2023.01.220104001

宇宙黑暗时代探路者−鸿蒙计划

doi: 10.11728/cjss2023.01.220104001
基金项目: 国家重点研发计划青年科学家项目(2022YFF0504300)和中国科学院空间科学战略性先导科技专项(二期)背景型号项目共同资助(XDA15020200)
详细信息
    作者简介:

    陈学雷:E-mail:xuelei@cosmology.bao.ac.cn

    阎敬业:yanjingye@nssc.ac.cn

  • 中图分类号: P17

Discovering the Sky at the Longest Wavelength Mission−A Pathfinder for Exploring the Cosmic Dark Ages

  • 摘要: 低频射电探测任务构想——鸿蒙计划旨在利用多颗卫星绕月编队形成超长波天文观测阵列,在月球背面开展空间低频射电天文探测。其科学目标是高精度测量全天射电频谱,揭示宇宙黑暗时代与黎明的演化历史;实现首次高分辨率超长波巡天,打开最后一个电磁窗口;观测太阳和行星超长波活动,揭示空间环境相互作用规律。该任务将获得超长波频段全天空图像,获取超长波波段天文射电源的强度、频谱、分布等信息。这些科学数据对于探索宇宙黑暗时代和黎明时代、研究银河系星际介质、宇宙线起源与传播、河外射电星系、类星体和星系团的演化、太阳活动与行星磁场等,具有重要的科学价值。

     

  • 图  1  宇宙历史(a)和对应的21 cm平均谱(b)

    Figure  1.  Cosmic history (a) and the corresponding 21 cm global spectrum (b)

    图  2  ULSA模型预测的10 MHz(a),3 MHz(b)和1 MHz(c)天图

    Figure  2.  Sky map of 10 MHz (a), 3 MHz (b) and 1 MHz (c) obtained by the ULSA model

    图  3  高频频谱仪测量系统

    Figure  3.  High frequency band spectrometer system

    图  4  低频干涉成像谱仪系统

    Figure  4.  Low frequency band interferometric imaging spectrometer system

    图  5  星间通信、测距和时钟同步系统

    Figure  5.  Inter-satellite communication, ranging and clock synchronization system

    图  6  任务运行阶段

    Figure  6.  Operation segments

    图  7  组合体发射状态

    Figure  7.  Assembly as it is launched

    图  8  主星在轨状态

    Figure  8.  Mother satellite in flight

    图  9  低频子星天线展开前后状态

    Figure  9.  Low frequency daughter satellite before and after antenna deployment

    图  10  高频子星在轨状态

    Figure  10.  High frequency daughter satellite in flight

    图  11  鸿蒙卫星阵列测角

    Figure  11.  Direction measurement for the DSL satellite array

    图  12  还原天图与相对误差及球谐相关系数

    Figure  12.  Reconstructed map, relative error, and spherical harmonic correlation coefficients

    图  13  不同观测时间下10′ 分辨率下的天空温度方差

    Figure  13.  Standard deviation of sky temperature at 10′ angular resolution with different observation time

    表  1  有效载荷配置

    Table  1.   Payloads

    卫星载荷名称数量
    高频子星 高频频谱仪 1
    星间通信测距同步系统 1
    星间测角系统 1
    低频子星 低频干涉成像谱仪 8
    星间通信测距同步系统 8
    星间测角系统 8
    主星 相关处理器 1
    定标系统 1
    星间通信测距同步系统 1
    星间测角系统 1
    下载: 导出CSV

    表  2  高频频谱仪技术指标

    Table  2.   Parameters of the high frequency band spectrometer

    技术指标设计要求
    天线 尺寸小、波瓣与频率无关、响应平坦
    探测频率 30~120 MHz
    探测灵敏度 优于0.1 K @ 80 MHz
    (1 MHz带宽10 min积分时间)
    探测动态范围 80 dB
    频谱分辨率 ≤100 kHz
    EMI/干扰幅度 ≤ 3 nV·Hz1/2
    EMI/宽频干扰 30~120 MHz内不存在带宽
    ≥ 2 MHz的宽频干扰
    EMI/单频点干扰 30 ~ 120 MHz内的占比≤5%
    下载: 导出CSV

    表  3  低频干涉成像谱仪技术指标

    Table  3.   Parameters of the low frequency band interferometric imaging spectrometer

    技术指标设计要求
    天线 2.5 m可展开三正交单极子
    探测频率 0.1 ~ 30 MHz
    空间分辨率 优于0.18° @ 1 MHz,0.012° @ 30 MHz
    谱分辨点数 优于8192
    探测灵敏度 优于1000 K @ 30 MHz
    (1 MHz带宽,10 min积分时间)
    EMI 优于≤ 3 nV·Hz1/2(0.1~30 MHz,90%观测频段)
    优于 9 nV·Hz1/2(0.1~30 MHz,其他频段)
    下载: 导出CSV

    表  4  星间通信、测距和时钟同步技术指标

    Table  4.   Parameters of the inter-satellite communication, ranging and clock synchronization

    技术指标设计要求
    频率范围 Ka前向链路(22.55~23.55 GHz)
    反向链路(25.60~27.22 GHz)
    多星通信方式 1主9从
    接入方式 频分复用
    通信距离 100 km
    测距精度 优于1 m
    时钟同步精度 ≤ 3.3 ns
    每星数传速率 ≥ 20 Mbit·s–1
    下载: 导出CSV

    表  5  星间测角系统技术指标

    Table  5.   Parameters of inter-satellite direction measurement system

    技术指标设计要求
    星空相机视场 9.5°
    测角精度 9 μrad
    焦距 40 mm
    相对孔径 1:1.2
    星空相机重量 ≤ 400 g
    灯阵发射角 110°
    灯阵平均电功率 15 W
    灯阵重量 300 g
    下载: 导出CSV

    表  6  点源探测灵敏度(10 MHz频率,1 MHz带宽)

    Table  6.   Point source detection sensitivity (10 MHz frequency, 1 MHz bandwidth)

    积分时间1 hour1 day1 week1 month1 year
    流量/Jy30061.123.111.23.2
    下载: 导出CSV
  • [1] ALEXANDER J K, KAISER M L, NOVACO J C, et al. Scientific instrumentation of the radio-astronomy-explorer-2 satellite[J]. Astronomy and Astrophysics, 1975, 40(4): 365-371
    [2] 陈学雷. 关于开展我国空间低频射电天文学研究的一些设想[C]//中国宇航学会深空探测技术专业委员会第二届学术会议论文集. 北京: 中国宇航学会, 2005: 49-53

    CHEN Xuelei. Some thoughts on developing space-based low frequency radio astronomy of our country[C]//Proceedings of the 2 nd Academic Annual Meeting of the Deep Space Exploration Commission of the Chinese Astronautics Society. Beijing: China Academy of Space Technology, 2005: 49-53
    [3] 吴季, 阎敬业, 武林, 等, 一种基于卫星编队的成像方法, 专利号201510208120.5

    WU Ji, YAN Jingye, WU Lin, et al. An imaging method based on satellite array: CN, 201510208120.5[P]. 2015
    [4] BOONSTRA A J, GARRETT M, KRUITHOF G, et al. Discovering the Sky at the Longest wavelengths (DSL)[C]//2016 IEEE Aerospace Conference. Big Sky: IEEE, 2016: 20
    [5] 吴季, 洪晓瑜, 阎敬业, 等. 超长波射电天文望远镜[C]//第二十八届全国空间探测学术研讨会. 兰州: 中国空间科学学会, 2015

    WU Ji, HONG Xiaoyu, YAN Jingye, et al. Ultralong wavelength radio astronomy telescope[C]//28 th National Space Exploration Meeting. Lanzhou: Chinese Society of Space Research, 2015
    [6] 张锦绣, 陈学雷, 曹喜滨, 等. 月球轨道编队超长波天文观测微卫星任务[J]. 深空探测学报, 2017, 4(2): 158-165 doi: 10.15982/j.issn.2095-7777.2017.02.009

    ZHANG Jinxiu, CHEN Xuelei, CAO Xibin, et al. Formation flying around lunar for ultra-long wave radio interferometer mission[J]. Journal of Deep Space Exploration, 2017, 4(2): 158-165 doi: 10.15982/j.issn.2095-7777.2017.02.009
    [7] YAN J, WU J, GURVITS L I, et al. Ultra-low-frequency radio astronomy observations from a selenocentric orbit: first results of the Longjiang-2 experiments. Experimental Astronomy, in print, preprint arxiv: 2212.09590
    [8] CHEN X L, BURNS J, KOOPMANS L, et al. Discovering the sky at the longest wavelengths with small satellite constellations[OL]. arXiv preprint arxiv: 1907.10853, 2019
    [9] CHEN X L, YAN J Y, DENG L, et al. Discovering the sky at the longest wavelengths with a lunar orbit array[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 379(2188): 20190566 doi: 10.1098/rsta.2019.0566
    [10] CHEN X L, MIRALDA-ESCUDÉ J. The spin-kinetic temperature coupling and the heating rate due to Lyα scattering before reionization: predictions for 21 centimeter emission and absorption[J]. The Astrophysical Journal, 2004, 602(1): 1-11 doi: 10.1086/380829
    [11] CHEN X L, MIRALDA-ESCUDÉ J. The 21 cm signature of the first stars[J]. The Astrophysical Journal, 2008, 684(1): 18-33 doi: 10.1086/528941
    [12] BOWMAN J D, ROGERS A E E, MONSALVE R A, et al. An absorption profile centred at 78 megahertz in the sky-averaged spectrum[J]. Nature, 2018, 555(7694): 67-70 doi: 10.1038/nature25792
    [13] BARKANA R. Possible interaction between baryons and dark-matter particles revealed by the first stars[J]. Nature, 2018, 555(7694): 71-74 doi: 10.1038/nature25791
    [14] SINGH S, NAMBISSAN T J, SUBRAHMANYAN R, et al. On the detection of a cosmic dawn signal in the radio background[J]. Nature Astronomy, 2022, 6(5): 607-617 doi: 10.1038/s41550-022-01610-5
    [15] VEDANTHAM H K, KOOPMANS L V E. Scintillation noise power spectrum and its impact on high-redshift 21-cm observations[J]. Monthly Notices of the Royal Astronomical Society, 2016, 458(3): 3099-3117 doi: 10.1093/mnras/stw443
    [16] SHEN E, ANSTEY D, DE LERA ACEDO E, et al. Quantifying ionospheric effects on global 21-cm observations[J]. Monthly Notices of the Royal Astronomical Society, 2021, 503(1): 344-353 doi: 10.1093/mnras/stab429
    [17] BRADLEY R F, TAUSCHER K, RAPETTI D, et al. A ground plane artifact that induces an absorption profile in averaged spectra from global 21 cm measurements, with possible application to EDGES[J]. The Astrophysical Journal, 2019, 874(2): 153 doi: 10.3847/1538-4357/ab0d8b
    [18] SILK J, CRAWFORD I, ELVIS M, et al. Astronomy from the Moon: the next decades[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 379(2188): 20190560 doi: 10.1098/rsta.2019.0560
    [19] KOOPMANS L V E, BARKANA R, BENTUM M, et al. Peering into the dark (ages) with low-frequency space interferometers[J]. Experimental Astronomy, 2021, 51(3): 1641-1676 doi: 10.1007/s10686-021-09743-7
    [20] BURNS J O. Transformative Science from the lunar farside: observations of the dark ages and exoplanetary systems at low radio frequencies[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 379(2188): 20190564 doi: 10.1098/rsta.2019.0564
    [21] CONG Y P, YUE B, XU Y D, et al. An ultralong-wavelength sky model with absorption effect[J]. The Astrophysical Journal, 2021, 914(2): 128 doi: 10.3847/1538-4357/abf55c
    [22] CONG Y P, YUE B, XU Y D, et al. A new method of reconstructing Galactic 3 D structures using ultralong-wavelength radio observations[J]. The Astrophysical Journal, 2022, 940(2): 180 doi: 10.3847/1538-4357/ac9df7
    [23] LIU A, PRITCHARD J R, TEGMARK M, et al. Global 21 cm signal experiments: a designer’s guide[J]. Physical Review D, 2013, 87(4): 043002 doi: 10.1103/PhysRevD.87.043002
    [24] MOZDZEN T J, BOWMAN J D, MONSALVE R A, et al. Limits on foreground subtraction from chromatic beam effects in global redshifted 21 cm measurements[J]. Monthly Notices of the Royal Astronomical Society, 2016, 455(4): 3890-3900 doi: 10.1093/mnras/stv2601
    [25] GU J H, WANG J Y. Direct parameter inference from global EoR signal with Bayesian statistics[J]. Monthly Notices of the Royal Astronomical Society, 2020, 492(3): 4080-4096 doi: 10.1093/mnras/staa052
    [26] SHI Y, DENG F R, XU Y D, et al. Lunar orbit measurement of the cosmic dawn’s 21 cm global spectrum[J]. The Astrophysical Journal, 2022, 929(1): 32 doi: 10.3847/1538-4357/ac5965
    [27] SINGH S, SUBRAHMANYAN R, SHANKAR N U, et al. SARAS 2: a spectral radiometer for probing cosmic dawn and the epoch of reionization through detection of the global 21-cm signal[J]. Experimental Astronomy, 2018, 45(2): 269-314 doi: 10.1007/s10686-018-9584-3
    [28] HUANG Q Z, SUN S J, ZUO S F, et al. An imaging algorithm for a lunar orbit interferometer array[J]. The Astronomical Journal, 2018, 156(2): 43 doi: 10.3847/1538-3881/aac6c6
    [29] SHI Y, XU Y D, DENG L, et al. Imaging sensitivity of a linear interferometer array on lunar orbit[J]. Monthly Notices of the Royal Astronomical Society, 2022, 510(2): 3046-3062 doi: 10.1093/mnras/stab3623
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  540
  • HTML全文浏览量:  133
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-31
  • 录用日期:  2022-04-13
  • 修回日期:  2022-10-11
  • 网络出版日期:  2023-02-03

目录

    /

    返回文章
    返回