留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太阳风向磁层输入电磁能量研究

荆浩 吕建永 蒋勇 王明 胡慧萍 刘子谦

荆浩, 吕建永, 蒋勇, 王明, 胡慧萍, 刘子谦. 太阳风向磁层输入电磁能量研究[J]. 空间科学学报, 2014, 34(3): 269-277. doi: 10.11728/cjss2014.03.269
引用本文: 荆浩, 吕建永, 蒋勇, 王明, 胡慧萍, 刘子谦. 太阳风向磁层输入电磁能量研究[J]. 空间科学学报, 2014, 34(3): 269-277. doi: 10.11728/cjss2014.03.269
JING Hao, LÜ Jianyong, JIANG Yong, WANG Ming, HU Huiping, LIU Ziqian. Electromagnetic Energy Transfer across the Magnetopause[J]. Chinese Journal of Space Science, 2014, 34(3): 269-277. doi: 10.11728/cjss2014.03.269
Citation: JING Hao, LÜ Jianyong, JIANG Yong, WANG Ming, HU Huiping, LIU Ziqian. Electromagnetic Energy Transfer across the Magnetopause[J]. Chinese Journal of Space Science, 2014, 34(3): 269-277. doi: 10.11728/cjss2014.03.269

太阳风向磁层输入电磁能量研究

doi: 10.11728/cjss2014.03.269
基金项目: 国家自然科学基金项目(41031063,41174165),公益性行业(气象)科研专项(201106011)和海洋公益性行业科研专项经费(201005017)共同资助
详细信息
    通讯作者:

    荆浩,E-mail:haoe.jing@gmail.com

  • 中图分类号: P353

Electromagnetic Energy Transfer across the Magnetopause

  • 摘要: 利用全球磁流体力学(MHD)模拟结果,通过确立包含磁层顶的太阳风流线内边界来识别三维磁层顶位形,并以极尖区位置作为磁层顶日侧与夜侧的分界线,在此基础上定量研究了不同条件下穿过磁层顶向磁层内输入的电磁能量. 研究发现,磁层顶的能量传输与太阳风条件密切相关,磁重联是控制电磁能量传输的重要机制. 结果表明,当IMF(行星际磁场)南向时,极尖区后方的磁尾附近存在电磁能输入最大值,当IMF北向时,电磁能输入最大值发生在极尖区附近;南向IMF条件下,在IMF强度增大或太阳风密度增大时,磁层顶电磁能传输的电磁能量比北向IMF条件时增加更显著. 太阳风通过调节磁层顶面积间接影响到磁层顶能量传输大小. 研究还发现,北向IMF与南向IMF条件下穿过磁层顶的电磁能输入的比值范围约为10%~30%,此比值一定程度上反映了北、南方向IMF与地磁场磁重联效率的比值.

     

  • [1] Xu Wenyao. Energy budget in the coupling processes of the solar wind, magnetosphere and ionosphere[J]. Chin. J. Space Sci., 2011, 31(1):1-14. In Chinese (徐文耀. 太阳风-磁 层-电离层耦合过程中的能量收支[J]. 空间科学学报, 2011, 31(1):1-14)
    [2] Dungey J W. Interplanetary magnetic field and the auroral zones[J]. Phys. Rev. Lett., 1961, 6, 47-48
    [3] Dungey J W. The structure of the exosphere, or adventures in velocity space[M]//Geophysics,the Earth's Environment. New York:Gordon and Breach, 1963:505
    [4] Lyon J G. The solar wind-magnetosphere-ionosphere system[J]. Science, 2000, 288:1987-1991
    [5] Shepherd S G, Greenwald R A, Ruohoniemi J M. Cross polar cap potentials measured with Super Dual Auroral Radar Network during quasi-steady solar wind and interplanetary magnetic field conditions[J]. J. Geophys. Res., 2002, 107:1094-1104
    [6] Guo J L, Shen C, Liu Z X. Simulation and comparison of particles entering the plasma sheet under northward and southward IMF conditions[J]. Chin. Sci. Bull., 2012, 57(34):3295-3300. In Chinese (郭九苓, 沈超, 刘振兴. IMF 北向 与南向时地球磁尾等离子片粒子注入机制[J]. 科学通报, 2012, 57(34):3295-3300)
    [7] Shen Chao, Liu Zhenxing. Northward turnings of the IMF trigger substorm onsets[J]. Chin. Sci.: A, 2000, 1:69-72. In Chinese (沈超, 刘振兴. 行星际磁场南转北向对亚暴 的触发效应[J]. 中国科学: A辑, 2000, 1:69-72)
    [8] Akasofu S I. Energy coupling between the solar wind and the magnetosphere[J]. Space Sci. Rev., 1981, 28:121-190
    [9] Petrukovich A A, Kallio E I, Pulkkinen T I, Koskinen H E J. Solar wind energy input and magnetospheric substorm activity compared[R]. Proceedings of 5th International Conference on Substorm, 2000:63-70
    [10] Ostgaard N, Tanskanen E I. Energetics of isolated and stormtime substorms[J]. Disturb. Geos.: Storm Subst. Relat., 2004, 274:169-184
    [11] Wang Chi. MHD Simulations on the Interaction of the solar wind with the magnetosphere[J]. Chin. J. Space Sci., 2011, 31(4):413-428. In Chinese (王赤. 太阳风-磁层相互作用的磁流体力学数值模拟研究[J]. 空间科学学报, 2011, 31(4):413-428)
    [12] Lopez R E, Wiltberger M, Hernandez S, Lyon J G. Solar wind density control of energy transfer to the magnetosphere[J]. Geophys. Res. Lett., 2004, 31(8):L08804
    [13] Palmroth M, Pulkkinen T I, Janhunen P, Wu C C. Stormtime energy transfer in global MHD simulation[J]. J. Geophys. Res., 2003, 108(A1):SMP24
    [14] Palmroth M, Laitinen T, Pulkkinen T. Magnetopause energy and mass transfer: Results from a global MHD simulation[J]. Ann. Geophys., 2006, 24:3467-3480
    [15] Rosenqvist L, Buchert S, Opgenoorth H, et al. Magnetospheric energy budget during huge geomagnetic activity using Cluster and ground-based data[J]. J. Geophys. Res., 2006, 111:A10211
    [16] Rosenqvist L, Opgenoorth H J, Rastaetter L, et al. Comparison of local energy conversion estimates from Cluster with global MHD simulations[J]. Geophys. Res. Lett., 2008, 35:L21104.
    [17] Anekallu C R, Palmroth M, Pulkkinen T I, et al. Energy conversion at the Earth magnetopause using single and multispacecraft methods[J]. J. Geophys. Res., 2011, 116:A11204
    [18] Lu J Y, Liu Z Q, Kabin K, et al. Three dimensional shape of the magnetopause: Global MHD results[J]. J. Geophy. Res., 2011, 116:A09237
    [19] Liu Z Q, Lu J Y, Kabin K, et al. Dipole tilt control of the magnetopause for southward IMF from global MHD simulations[J]. J. Geophys. Res., 2012, 117:A07207
    [20] Lu J Y, Jing H, Liu Z Q, et al. Energy transfer across the magnetopause for northward and southward interplanetary magnetic fields[J]. J. Geophys. Res., 2012, 118:1-13
    [21] Margaret G K, Christopher T R. Introduction to Space Physics[M]. Cambridge: Cambridge University Press, 1995: 261
  • 加载中
计量
  • 文章访问数:  1082
  • HTML全文浏览量:  54
  • PDF下载量:  1333
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-13
  • 修回日期:  2013-10-10
  • 刊出日期:  2014-05-15

目录

    /

    返回文章
    返回