[1] |
Fejer B G, D T Farley, R F Woodman, et al. Dependence of equatorial F region vertical drifts on season and solar circle,[J]. J. Geophys. Res., 1979, 84:5792
|
[2] |
Fejer B G. The equatorial ionospheric electric fields—A review,[J]. J. Atmos. Terr. Phys., 1981, 43:377
|
[3] |
Fejer B G, E R de Paula, R A Heelis, et al. Global equatorial ionospheric vertical plasma drift measured by the AE-E satellite,[J]. J. Geophys. Res., 1995, 100:5769
|
[4] |
Richmond A D, M Blanc, B A Emery, et al. An empirical model of quiet- day ionospheric electric fields at middle and low latitudes,[J]. J. Geophys. Res., 1980, 85:4658
|
[5] |
Van Sabben D. Ionospheric current systems caused by non-periodic winds,[J]. J. Atmos. Terr. Phys., 1962, 24:959-974
|
[6] |
Tarpley J D. The ionospheric wind dynamo-I, Lunar tide,[J]. Planet. Space Sci., 1970, 18:1075
|
[7] |
Tarpley J D. The ionospheric wind dynamo-II, Solar tide,[J]. Planet. Space Sci., 1970, 18:1090
|
[8] |
Untiedt J. A model of the equatorial electrojet involving meridional currents,[J]. J. Geophys. Res., 1967, 72:5779
|
[9] |
Sugiura M, Poros D J. An improved model equatorial electrojet with a meridional current system,[J]. J. Geophys. Res., 1969, 74:4025
|
[10] |
Richmond A D. Equatorial electrojet-I. Development of a model including winds and instabilities,[J]. J. Atmos. Terr. Phys., 1973, 35:1083
|
[11] |
Richmond A D. Equatorial electrojet-II. Use of the model to study the equatorial ionosphere,[J]. J. Atmos. Terr. Phys., 1973, 35:1105
|
[12] |
Masahiko T, Taeda H. Three-dimensional structure of ionospheric currents, I, currents caused by diurnal tidal winds,[J]. J. Geophys. Res., 1980, 85:6895
|
[13] |
Crain D J, Heelis R A, Bailey G J, et al. Low-latitude plasma drift from a simulation of the global atmospheric dynamo,[J]. J. Geophys. Res., 1993, 98:6039
|
[14] |
Ren Z P, Wan W X, Wei Y, et al. A theoretical model for mid-and low-latitude ionospheric electric fields in realistic geomagnetic fields,[J]. Chin. Sci. Bull., 2008, 53(24):3883
|
[15] |
Ren Z P, Wan W X, Liu L B. GCITEM-IGGCAS: A new global coupled ionosphere-thermosphere-electrodynamics model,[J]. J. Atmos. Terr. Phys., 2009, 71:2064
|
[16] |
Weimer D R. A flexible IMF dependent model of high-latitude electric potentials having space weather applications,[J]. Geophys. Res. Lett., 1996, 23:2549
|
[17] |
Hu Y Q, Wu S T. A Full-Implicit-Continuous-Eulerian (FICE) scheme for multidimensional transient magnetohydrodynamic (MHD) flows,[J]. J. Comput. Phys., 1984, 55:33
|
[18] |
Richmond A D. Numerical model of the equatorial electrical electrojet. Rep. AFCRL-72-0668, ERP 421, Air Force Cambridge Res. Lab., Hanscom AFB, Bedford, Mass. 1972
|
[19] |
Forbes J. The equatorial electrojet,[J]. Rev. Geophys. Space Phys., 1981, 19:469
|
[20] |
Woodman R F, Rastongi R G, Calderon C. Solar cycle effects on the electric fields in the equatorial ionosphere,[J]. J. Geophys. Res., 1977, 82:5257
|
[21] |
Fesen C G, Crowley G, Roble R G, et al. Simulation of the pre-reversal enhancement in the low latitude vertical ion drifts,[J]. Geophys. Res. Lett., 2000, 27:1851
|
[22] |
Du J, Stening R J . Simulating the ionospheric dynamo-II. Equatorial electric fields,[J]. J. Atmos. Terr. Phys., 1999, 61:925
|
[23] |
Rishbeth H. The F-layer dynamo,[J]. Planet. Space Sci., 1971, 19:263
|
[24] |
Farley D T, E Bonelli, B G Fejer, et al. The pre-reversal enhancement of the zonal electric field in the equatorial ionosphere,[J]. J. Geophys. Res., 1986, 91:13,723
|