留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电离层水平电场与风场的耦合模拟研究

解海永 余涛 王铁邦 王乐

解海永, 余涛, 王铁邦, 王乐. 电离层水平电场与风场的耦合模拟研究[J]. 空间科学学报, 2014, 34(4): 406-414. doi: 10.11728/cjss2014.04.406
引用本文: 解海永, 余涛, 王铁邦, 王乐. 电离层水平电场与风场的耦合模拟研究[J]. 空间科学学报, 2014, 34(4): 406-414. doi: 10.11728/cjss2014.04.406
Xie Haiyong, Yu Tao, Wang Tiebang, Wang Le. Modeling Study on the Coupling Effect of the Horizontal Electric Field and Winds in the Ionosphere[J]. Chinese Journal of Space Science, 2014, 34(4): 406-414. doi: 10.11728/cjss2014.04.406
Citation: Xie Haiyong, Yu Tao, Wang Tiebang, Wang Le. Modeling Study on the Coupling Effect of the Horizontal Electric Field and Winds in the Ionosphere[J]. Chinese Journal of Space Science, 2014, 34(4): 406-414. doi: 10.11728/cjss2014.04.406

电离层水平电场与风场的耦合模拟研究

doi: 10.11728/cjss2014.04.406
基金项目: 国家自然科学基金项目资助(40974094,41104106)
详细信息
    通讯作者:

    余涛,E-mail:yutao@cma.gov.cn

  • 中图分类号: P352

Modeling Study on the Coupling Effect of the Horizontal Electric Field and Winds in the Ionosphere

  • 摘要: 设计了一个将电离层水平电场与风场耦合的模拟方案,研究了电流函数和风场在耦合前后的变化与差异. 研究发现,水平电场与风场相互反馈后,风场的变化比电流函数小. 经向风在白天有较明显的差异,夜晚的差异比白天小,主要出现在中高纬地区,并随高度的增加而增大,300km左右达到最大值,其后几乎保持不变. 纬向风有与经向风相似的变化,但纬向风耦合前后的差异比经向风小. 电流函数在耦合后有较大改变,两个涡旋强度都有较强增加,并且北半球的增强大于南半球,而夜晚差异较小. 结果表明,在研究的高度范围内,风场对电场的控制作用大于电场对风场的影响.

     

  • [1] Appleton E V, Ingram L J. Magnetic storms and upper atmosphere ionization[J]. Nature, 1935, 136:548-549
    [2] Fejer B G. The equatorial ionospheric fields[J]. Review. J. Atmos. Terr. Phys., 1981, 43(5/6):377-386
    [3] Titheridge T E. Winds in the ionosphere-A review[J]. J. Atmos. Terr. Phys., 1995, 57(14):1681-1714
    [4] H Rishbeth. The equatorial F-layer: progress and puzzles[J]. Ann. Geophys., 2000, 18(7):730-739
    [5] Liu L, Luan X, Wan W, Ning B, Lei J. A new approach to the derivation of dynamic information from ionosonde measurements[J]. Ann. Geophys., 2003, 21(11):2185-2191
    [6] Liu L, Luan X, Wan W, Lei J, Ning B. Solar activity variations of equivalent winds derived from global ionosonde data[J]. J. Geophys. Res., 2004, 109, A12305, doi: 10.1029/2004JA010574
    [7] Tarpley J D. The ionospheric wind dynamo-I: Lunar tide[J]. Planet. Space Sci., 1970, 18(7):1075-1090
    [8] Tarpley J D. The ionospheric wind dynamo-I!I: Solar tide[J]. Planet. Space Sci., 1970, 18(7):1091-1103
    [9] Matsushita S. Dynamo currents, winds and electric fields[J]. Radio Sci., 1969, 4(9):771-780
    [10] Richmond A D. Equatorial electrojet-I. development of a model including winds and instabilities[J]. J. Atmos. Terr. Phys., 1973, 35(6):1083-1103
    [11] XU Wenyao, XIA Qing, LI Weidong. A numerical solution of the dynamo equation for the global ionosphere[J]. Chin. J. Space Sci., 1994, 14(3):205-209. In Chinese (徐文耀, 夏庆, 李卫东. 全球电离层发电机方程的一种数值解法[J]. 空间科学学报, 1994, 14(3):205-209)
    [12] Yu Tao, Wan Weixing, Liu Libo. Numerical study of the ionospheric electric field at mid and low latitudes[J]. Sci. China: A, 2002, 32(8):688-696. In Chinese (余涛, 万卫星, 刘立波. 中低纬电离层电场理论模式[J]. 中国科学: A, 2002, 32(8):688-696)
    [13] Shen C S, Zi M Y, Wang J S, et al. Global disturbance currents in the ionosphere[J]. J. Atmo. Solar-Terr. Phys., 2006, 68(7):793-802
    [14] Kohl M, King J W. Atmospheric winds between 100 and 700km and their effects on the ionosphere[J]. J. Atoms. Terr. Phys., 1967, 29(9):1045-1062
    [15] Vollad H, Mayr H G. A numerical study of the three-dimensional diurnal variations within the thermosphere[J]. Ann. GeoPhys., 1973, 29:61-75
    [16] Forbes J M, Garrett H G. Solar diurnal tide in the thermosphere[J]. J. Atmos. Sci., 1976, 33:2226-2241
    [17] Lei Jiuhou, Wan Weixing, Liu Libo, et al. Theoretical modeling and analysis of thermospheric winds in ionosphere[J]. Chin. J. Geophys., 2003, 46(6):736-742. In Chinese (雷久侯, 万卫星, 刘立波, 等. 热层风场的理论模拟与分析[J]. 地球物理学报, 2003, 46(6):736-742)
    [18] Lei J H, Liu L B, Luan X L, et al. Model study on neutral winds in ionospheric F-region and comparison with the equivalent winds derived form the Wuhan ionosonde data[J]. Terr. Atmos. Ocean., 2003, 14(1):1-12
    [19] Ji Qiao. Study on the Thermospheric Dynamic Model[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2006. In Chinese (纪巧. 热层大气动力学模式研究[D]. 北京: 中国科学院研究生院, 2006)
    [20] Dickinson R E, Ridley E C, Roble R G. Meridional circulation in the thermosphere. I-Equinox conditions[J]. J. Atmos. Sci., 1975, 32:1737-1754
    [21] Dickinson R E, Ridley E C, Roble R G. Meridional circulation in the thermosphere.II-Solstice conditions[J]. J. Atmos. Sci., 1977, 34:178-192
    [22] Fuller-Rowell T J, D Rees. A three-dimensional time-dependent global model of the thermosphere[J]. J. Atmos. Sci., 1980, 37:2545-2567
    [23] Ren Z, WanW, LiuL, Le H. TIME3D-IGGCAS: A new three-dimension mid- and low-latitude theoretical ionospheric model in realistic geomagnetic fields[J]. J. Atmos. Solar-Terr. Phys., 2012, 80:258-266
    [24] Richmond A D, Matsushita S. On the production mechanism of electric currents and fields in the ionosphere[J]. J. Geophys. Res., 1976, 81(4):547-555
    [25] Zhuang Hongchun. Space Electricity[M]. Beijing: Science Press, 1995. In Chinese (庄红春. 空间电学[M]. 北京: 科学出版社, 1995)
    [26] Evans J V. Ionospheric movements measured by incoherent scatter: A review[J]. J. Atmos. Terr. Phys., 1972, 34(2):175-209
    [27] Evans J V. Measurements of horizontal drifts in the E and F-regions at Millstone Hill[J]. J. Geophys. Res., 1972, 77(13):2341-2352
    [28] Carpenter L A, Kirchhoff V W J H. Daytime three-dimensional drifts at Millstone Hill Observatory[J]. Radio Sci., 1974, 9(2):217-222
  • 加载中
计量
  • 文章访问数:  926
  • HTML全文浏览量:  29
  • PDF下载量:  1138
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-29
  • 修回日期:  2014-03-07
  • 刊出日期:  2014-07-15

目录

    /

    返回文章
    返回