留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电离层周日变化对解算GPS硬件延迟稳定性的影响

李灵樨 张东和 郝永强 萧佐

李灵樨, 张东和, 郝永强, 萧佐. 电离层周日变化对解算GPS硬件延迟稳定性的影响[J]. 空间科学学报, 2015, 35(2): 143-151. doi: 10.11728/cjss2015.02.143
引用本文: 李灵樨, 张东和, 郝永强, 萧佐. 电离层周日变化对解算GPS硬件延迟稳定性的影响[J]. 空间科学学报, 2015, 35(2): 143-151. doi: 10.11728/cjss2015.02.143
Li Lingxi, Zhang Donghe, Hao Yongqiang, Xiao Zuo. Influence of ionospheric diurnal variation on the estimated GPS differential code bias[J]. Chinese Journal of Space Science, 2015, 35(2): 143-151. doi: 10.11728/cjss2015.02.143
Citation: Li Lingxi, Zhang Donghe, Hao Yongqiang, Xiao Zuo. Influence of ionospheric diurnal variation on the estimated GPS differential code bias[J]. Chinese Journal of Space Science, 2015, 35(2): 143-151. doi: 10.11728/cjss2015.02.143

电离层周日变化对解算GPS硬件延迟稳定性的影响

doi: 10.11728/cjss2015.02.143
基金项目: 国家自然科学基金项目(41274156, 41174134)和国家重大基础研究项目(2011CB811405)共同资助
详细信息
    通讯作者:

    张东和,E-mail:zhangdh@pku.edu.cn

  • 中图分类号: P352

Influence of ionospheric diurnal variation on the estimated GPS differential code bias

  • 摘要: 针对电离层周日变化特征分析了其可能对SCORE方法估算的硬件延迟稳定性的影响. 利用BJFS以及XIAM台站的GPS观测数据, 解算了位于太阳活动高年(2001年)和太阳活动低年(2009年)的卫星硬件延迟并分析了估算的硬件延迟的稳定性. 研究发现, 电离层周日变化对估算的硬件延迟稳定性具有一定影响, 但是利用不同台站所得到的卫星硬件延迟稳定性在昼夜不同时间上的解算结果存在一定差异. 电离层周日变化对利用 BJFS台站数据解算的硬件延迟稳定性日夜差异较为明显, 在太阳活动高年利用XIAM 台站数据解算的硬件延迟日夜稳定性差异不很明显, 由于XIAM台站处于电离层赤道异常峰附近, 夜间电离层变化很大, 因此对比中纬度地区, 电离层周日变化对赤道异常峰附近地区硬件延迟稳定性解算结果的影响相对较小, 但在太阳活动低年, 其影响仍较为显著.

     

  • [1] Lanyi G E, Roth T. A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations[J]. Radio Sci., 1988, 23(4):483-492
    [2] Coco D S, Coker C, Dahlke S R, et al. Variability of GPS satellite differential group delay biases[J]. IEEE Trans. Aeros. Elect. Syst., 1991, 27(6):931-938
    [3] Sardón E, Zarraoa N. Estimation of total electron content using GPS data: How stable are the differential satellite and receiver instrumental biases[J]. Radio Sci., 1997, 32 (5):1899-1910
    [4] Ma G, Maruyama T. Derivation of TEC and estimation of instrumental biases from GEONET in Japan[J]. J. Commun. Res. Lab., 2002, 49(4):121-133
    [5] Otsuka Y. A New Technique for Mapping of Total Electron Content Using GPS Network in Japan[D]. Kyoto: Kyoto University, 2001
    [6] Liu Z, Gao Y. Ionospheric TEC predictions over a local area GPS reference network[J]. GPS Solut., 2004, 8 (1):23-29
    [7] Sardon E, Rius A, Zarraoa N. Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations[J]. Radio Sci., 1994, 29(3):577-586
    [8] Davies K, Hartmann G K. Studying the ionosphere with the Global Positioning System[J]. Radio Sci., 1997, 32 (4):1695-1703
    [9] Lunt N, Kersley L, Bishop G J, et al. The effect of the protonosphere on the estimation of GPS total electron content: Validation using model simulations[J]. Radio Sci., 1999, 34(5):1261-1271
    [10] Zhang W, Zhang D H, Xiao Z. The influence of geomagnetic storms on the estimation of GPS instrumental biases[J]. Ann. Geophys., 2009, 27:1613-1623
    [11] Zhang D H, Zhang W, Li Q, et al. Accuracy analysis of the GPS instrumental bias estimated from observations in middle and low latitudes[J]. Ann. Geophys., 2010, 28 (8):09927689
    [12] Anghel A, Carrano C, Komjathy A, et al. Kalman filter-based algorithms for monitoring the ionosphere and plasmasphere with GPS in near-real time[J]. J. Atmos. Solar-Terr. Phys., 2009, 71(1):158-174
    [13] Carrano C S, Anghel A, Quinn R A, et al. Kalman filter estimation of plasmaspheric total electron content using GPS[J]. Radio Sci., 2009, 44(1):35-42
    [14] Ma X F, Maruyama T, Ma G, et al. Three-dimensional ionospheric tomography using observation data of GPS ground receivers and ionosonde by neural network[J]. J. Geophys. Res.: Space Phys., 2005, 110, A05308
    [15] Mazzella A J, Holland E A, Andreasen A M, et al. Autonomous estimation of plasmasphere content using GPS measurements[J]. Radio Sci., 2002, 37(6):41-45
    [16] Mazzella A J, Rao G S, Bailey G J, et al. GPS determinations of plasmasphere TEC[C]//International Beacon Satellite Symposium, Boston, 2007
    [17] Rama Rao P V S, Niranjan K, Prasad D S V V D, et al. On the validity of the Ionospheric Pierce Point (IPP) altitude of 350km in the Indian equatorial and low-latitude sector[J]. Ann. Geophys., 2006, 24:2159-2168
    [18] Ciraolo L, Azpilicueta F, Brunini C, et al. Calibration errors on experimental slant Total Electron Content (TEC) determined with GPS[J]. J. Geodesy, 2007, 81(2): 111-120
    [19] Hernández-Pajares M, Juan J M, Sanz J, et al. The IGS VTEC maps: A reliable source of ionospheric information since 1998[J]. J. Geodesy, 2009, 83(3/4):263-275
    [20] Zhang D H, Shi H, Jin Y Q, et al. The variation of the estimated GPS instrumental bias and its possible connection with ionospheric variability[J]. Sci. China: Tech. Sci., 2014, 57(1):67-79
    [21] Bishop G, Mazzella A, Holland E, et al. Algorithms that use the ionosphere to control GPS errors[C]//Position Location and Navigation Symposium. Atlanta: IEEE, 1996:145-152
    [22] Mannucci A J, Wilson B D, Yuan D N, et al. A global mapping technique for GPS-derived ionospheric total electron content measurements[J]. Radio Sci., 1998, 33 (3):565-582
  • 加载中
计量
  • 文章访问数:  1279
  • HTML全文浏览量:  42
  • PDF下载量:  1429
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-01
  • 修回日期:  2014-10-17
  • 刊出日期:  2015-03-15

目录

    /

    返回文章
    返回