Comparison Of Ionospheric Total Electron Content Over North America And East Asia With Eof Analysis
-
摘要: 考察了北美(30°N-50°N, 140°W-50°W)与东亚 (42.5°N-57.5°N, 65°E-140°E) 中纬地区电离层总电子含量 (TEC)的变化. TEC数据来自美国喷气动力实验室(JPL)约15年的全球电离层图 (Global Ionospheric Map, GIM)数据. 利用经验正交函数(Empirical Orthogonal Functions, EOF)得到上述两地区前三阶本征模及相关时间系数, 分别约占TEC 总变化的99.57%和99.79%. 结果表明, 两地区前三阶EOF分量所表现出的TEC变 化基本一致. 第一阶EOF分量表现为受太阳活动调制的半年变化; 第二阶EOF 分量表现为关于零磁偏线的经向电子浓度东西不对称结构, 计算表明该结构 与受地磁偏角控制的热层纬向水平风引起的等离子体向上漂移密切相关; 第三 阶EOF分量表现为磁倾控制的热层子午向风引起的等离子体向上漂移影响.
-
关键词:
- 电离层TEC /
- 经验正交函数(EOF) /
- 半年/年变化 /
- TEC东西不对称
Abstract: In the present work, variations of ionospheric Total Electron Content (TEC) are investigated and compared with applying Empirical Orthogonal Functions (EOF) on the dataset from the Global Ionospheric Maps (GIMs) which are produced by Jet Propulsion Laboratory (JPL) over two concerned areas: the North America (30°N-50°N, 140°W-50°W) and East Asia (42.5°N-57.5°N, 65°E-140°E). The first three EOF components attribute about 99.57% and 99.79% to the total variations separately, and spatial-temporal features manifested by each EOF components are similar for the two areas: the first order EOF component for both areas represents semiannual variation which is strongly modulated by the solar activity; the second order component exhibits pronounced east-west longitude difference to the zero valued geomagnetic declination line, and these east-west longitude differences are coincidently consistent with plasma drift velocity caused by thermospheric zonal wind; the third order component demonstrates latitudinal variations possibly influenced by plasma drift velocity caused by thermospheric meridional wind. Results of the this paper are useful for understanding the physics mechanism of the ionospheric variations. -
[1] Rishbeth H. How the thermospheric circulation affects the ionospheric F2-layer[J]. J. Atmos. Sol. Terr. Phys., 1998, 60(14):1385-1402 [2] Rishbeth H, Müller-Wodarg I C F, Zou L, et al. Annual and semiannual variations in the ionospheric F2-layer: II. Physical discussion[J]. Ann. Geophys., 2000, bf 18(8):945-956 [3] Immel T J, Sagawa E, England S L, et al. Control of equatorial ionospheric morphology by atmospheric tides[J]. it Geophys. Res. Lett., 2006, 33(15):198-210 [4] Hagan M E, Maute A, Roble R G, et al. Connections between deep tropical clouds and the Earth's ionosphere[J]. it Geophys. Res. Lett., 2007, 34(20):120-122 [5] Horvath I, Essex E A. Vertical E drift velocity variations and associated low-latitude ionospheric irregularities investigated with the TOPEX and GPS satellite data[J]. Ann. Geophys., 2003, 21:1017-1030 [6] Thampi S V, Lin C, Liu H, et al. First tomographic observations of the midlatitude summer nighttime anomaly over Japan[J]. J. Geophys. Res., 2009, 114(A10):270-313 [7] Lin C H, Liu J Y, Cheng C Z, et al. Three-dimensional ionospheric electron density structure of the Weddell Sea anomaly[J]. J. Geophys. Res., 2009, 114(A2) [8] Burns A G, Zeng Z, Wang W, et al. Behavior of the F2 peak ionosphere over the South Pacific at dusk during quiet summer conditions from COSMIC data[J]. J. Geophys. Res., 2008, 113(A12):2036-2044 [9] Zhang S R, Foster J C, Coster A J, et al. East-West Coast differences in total electron content over the continental US[J]. Geophys. Res. Lett., 2011, 38(19):103-140 [10] Zhao B, Wang M, Wang Y, et al. East-west differences in F-region electron density at midlatitude: Evidence from the Far East region[J]. J. Geophys. Res., 2013, bf118(1):542-553 [11] Xu J S, Li X J, Liu Y W, et al. TEC differences for the mid-latitude ionosphere in both sides of the longitudes with zero declination[J]. it Adv. Space Res., 2014, 54(5):883-895 [12] Zhang S R, Chen Z, CosterA J, it et al. Ionospheric symmetry caused by geomagnetic declination over North America[J]. Geophys. Res. Lett., 2013, 40(20):5350-5354 [13] Storch H, Zwiers F W. Statistical Analysis in Climate Research[M]. Cambridge: Cambridge University Press, 2001 [14] Daniell R E, Brown L D, Anderson D N, et al. Parameterized ionospheric model: A global ionospheric parameterization based on first principle models[J]. Radio Sci., 1995, 30(5):1499-1510 [15] Howe B M, Runciman K, Secan J A. Tomography of the ionosphere: Four-dimensional simulations[J]. Radio Sci., 1998, 33(1):109-128 [16] Mao T, Wan W X, Liu L B. An EOF based empirical model of TEC over Wuhan[J]. Chin. J. Geophys., 2005, bf48(4):827-834 [17] Mao T, Wan W, Yue X, et al. An empirical orthogonal function model of total electron content over China[J]. Radio Sci., 2008, 43(2):2217-2235 [18] Liu C, Zhang M L, Wan W, et al. Modeling M(3000)F2 based on empirical orthogonal function analysis method[J]. Radio Sci., 2008, 43(1):411-411. [19] Wan W X, Ding F, Ren Z P, et al. Modeling the global ionospheric total electron content with empirical orthogonal function analysis[J]. Sci. China: Tech. Sci., 2012, bf55(5):1161-1168 [20] Hern'andez-Pajares M. Performance of IGS ionosphere TEC maps[R]. Barcelona: Research Group of Astronomy and Geomatics, Technical University of Catalonia, 2003:16 [21] Mannucci A J, Wilson B D, Yuan D N, et al. A global mapping technique for GPS: Derived ionospheric total electron content measurements[J]. Radio Sci., 1998, bf33(3):565-582 [22] Iijima B A, Harris I L, Ho C M, it et al. Automated daily process for global ionospheric total electron content maps and satellite ocean altimeter ionospheric calibration based on Global Positioning System data[J]. J. Atmos. Sol. Terr. Phys., 1999, 61(16):1205-1218 [23] Navarra A, Simoncini V. A Guide to Empirical Orthogonal Functions for Climate Data Analysis[M]. Springer Netherlands, 2010 [24] Tabachnick B G, Fidell L S. Using Multivariate Statis-tics[M]. Boston Massachusetts Allyn and Bacon, 2001 [25] Liu L, Wan W, Ning B, et al. Solar activity variations of the ionospheric peak electron density[J]. J. Geophys. Res., 2006, 111(A8):437-440 [26] Richards P G, Fennelly J A, Torr D G. EUVAC: A solar EUV flux model for aeronomic calculations[J]. J. Geophys. Res., 1994, 99(A5):8981-8992 [27] Forbes J M, Palo S E, Zhang X. Variability of the ionosphere[J]. J. Atmos. Sol. Terr. Phys., 2000, 62(8):685-693 [28] Rishbeth H, Mendillo M. Patterns of F2-layer variability[J]. J. Atmos. Sol. Terr. Phys., 2001, 63(15):1661-1680 [29] Millward G H, Rishbeth H, Fuller-Rowell T J, et al. Ionospheric F2 layer seasonal and semiannual variations[J]. J. Geophys. Res., 1996, 101(A3):5149-5156 [30] Zhao B, Wan W, Liu L, et al. Features of annual and semiannual variations derived from the global ionospheric maps of total electron content[J]. Ann. Geophys., 2008, bf25(12):2513-2527 [31] Zou L, Rishbeth H, Müller-Wodarg I C F, et al. Annual and semiannual variations in the ionospheric F2-layer. I. Modelling[J]. Ann. Geophys., 2000, bf18(8):927-944 [32] Yu T, Wan W, Liu L, et al. A simulation study on the semiannual variation of the ionospheric F2 layer zonal electric fields at the magnetic equator[J]. J. Geophys. Res., 2006, 111, doi: 10.1029/2005JA011390 [33] Ma R, Xu J, Liao H. The features and a possible mecha-nism of semiannual variation in the peak electron density of the low latitude F2 layer[J]. J. Atmos. Sol. Terr. Phys., 2003, 65(1):47-57 [34] Lin C H, Liu C H, Liu J Y, et al. Midlatitude summer nighttime anomaly of the ionospheric electron density observed by FORMOSAT-3/COSMIC[J]. J. Geophys. Res., 2010, 115, doi: 10.1029/2009JA014084 [35] Penndorf R. The average ionospheric conditions over the Antarctic[M]//Geomagnetism and Astronomy: Studies in the Ionosphere, Geomagnetism and Atmospheric Radio Noise, Antarct. Res. Ser., Washington DC: AGU, 1965:1-45 [36] He M, Liu L, Wan W, et al. A study of the Weddell Sea Anomaly observed by FORMOSAT-3/COSMIC[J]. J. Geophys. Res., 2009, 114(A12) [37] Burns A G, Solomon S C, Wang W, it et al. The summer evening anomaly and conjugate effects[J]. J. Geophys. Res., 2011, 116(A1) [38] Burger W, Burge M J. Digital image processing: An algorithmic introduction using Java[M]. Springer Science & Business Media, 2009 [39] Hoggar S G. Mathematics of Digital Images: Creation, Compression, Restoration, Recognition[M]. Cambridge: Cambridge University Press, 2006 -
-
计量
- 文章访问数: 1725
- HTML全文浏览量: 175
- PDF下载量: 1744
-
被引次数:
0(来源:Crossref)
0(来源:其他)