留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Invariant Modulation of IMF Clock Angle on the Solar Wind Energy Input into the Magnetosphere

Han Jinpeng Li Hui Tang Binbin Wang Chi

Han Jinpeng, Li Hui, Tang Binbin, Wang Chi. Invariant Modulation of IMF Clock Angle on the Solar Wind Energy Input into the Magnetosphere[J]. 空间科学学报, 2015, 35(6): 673-678. doi: 10.11728/cjss2015.06.673
引用本文: Han Jinpeng, Li Hui, Tang Binbin, Wang Chi. Invariant Modulation of IMF Clock Angle on the Solar Wind Energy Input into the Magnetosphere[J]. 空间科学学报, 2015, 35(6): 673-678. doi: 10.11728/cjss2015.06.673
Han Jinpeng, Li Hui, Tang Binbin, Wang Chi. Invariant Modulation of IMF Clock Angle on the Solar Wind Energy Input into the Magnetosphere[J]. Journal of Space Science, 2015, 35(6): 673-678. doi: 10.11728/cjss2015.06.673
Citation: Han Jinpeng, Li Hui, Tang Binbin, Wang Chi. Invariant Modulation of IMF Clock Angle on the Solar Wind Energy Input into the Magnetosphere[J]. Journal of Space Science, 2015, 35(6): 673-678. doi: 10.11728/cjss2015.06.673

Invariant Modulation of IMF Clock Angle on the Solar Wind Energy Input into the Magnetosphere

doi: 10.11728/cjss2015.06.673
基金项目: Supported by the National Basic Research Program (2012CB825602), National Natural Science Foundation of China (NNSFC, 41204118, 41231067), and in part by the Specialized Research Fund for State Key Laboratories of China.
详细信息
    通讯作者:

    Han Jinpeng,E-mail:hanjinpeng520@126.com

  • 中图分类号: P353

Invariant Modulation of IMF Clock Angle on the Solar Wind Energy Input into the Magnetosphere

Funds: Supported by the National Basic Research Program (2012CB825602), National Natural Science Foundation of China (NNSFC, 41204118, 41231067), and in part by the Specialized Research Fund for State Key Laboratories of China.
More Information
    Corresponding author: Han Jinpeng,E-mail:hanjinpeng520@126.com
  • 摘要: By use of the global PPMLR Magnetohydrodynamics (MHD) model, a serial of quasisteady- state numerical simulations were conducted to examine the modulation property of the interplanetary magnetic field clock angle θ on the solar wind energy input into the magnetosphere. All the simulations can be divided into seven groups according to different criteria of solar wind conditions. For each group, 37 numerical examples are analyzed, with the clock angle varying from 0° to 360° with an interval of 10°, keeping the other solar wind parameters (such as the solar wind number density, velocity, and the magnetic field magnitude) unchanged. As expected, the solar wind energy input into the magnetosphere is modulated by the IMF clock angle. The axisymmetrical bell-shaped curve peaks at the clock angle of 180°. However, the modulation effect remains invariant with varying other solar wind conditions. The function form of such an invariant modulation is found to be sin(θ/2)2.70 + 0.25.

     

  • [1] Akasofu S I. Energy coupling between the solar-wind and the magnetosphere [J]. Space Sci. Rev., 1981, 28:121-190
    [2] Perreault P, Akasofu S I. A study of geomagnetic storms[J]. Geophys. J. Roy. Astron. S. 1978, 54:547-573
    [3] Scurry L, Russell C T. Proxy studies of energy transfer to the magnetosphere [J]. J. Geophys. Res. Space, 1991, 96:9541-9548
    [4] Temerin M, Li X. Dst model for 1995-2002 [J]. J. Geophys. Res. Space, 2006, 111:A04221
    [5] Tenfjord P, Østgaard N. Energy transfer and flow in the solar wind-magnetosphere-ionosphere system: A new coupling function [J]. J. Geophys. Res. Space, 2013, 118:5659-5672
    [6] Vasyliunas V M, Kan J R, Siscoe G L, et al. Scaling relations governing magnetospheric energy transfer [J]. Planet Space Sci., 1982, 30:359-365
    [7] Burton R K, Mcpherron R L, Russell C T. An empirical relationship between interplanetary conditions and Dst [J]. J. Geophys. Res., 1975, 80:4204-4214
    [8] Kan J R, Lee L C. Energy coupling function and solar wind-magnetosphere dynamo [J]. Geophys. Res. Lett., 1979, 6:577-580
    [9] Newell P T, Sotirelis T, Liou K, et al. A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables [J]. J. Geophys. Res., 2007, 112:A01206
    [10] Wygant J R, Torbert R B, Mozer F S. Comparison of S3-3 polar cap potential drops with the interplanetary magnetic field and models of magnetopause reconnection [J]. J. Geophys. Res. Space, 1983, 88:5727-5735
    [11] Jing H, Lu J Y, Kabin K, et al. MHD simulation of energy transfer across magnetopause during sudden changes of the IMF orientation [J]. Planet Space Sci., 2014, 97:50-59
    [12] Lu J Y, Jing H, Liu Z Q, et al. Energy transfer across the magnetopause for northward and southward interplanetary magnetic fields [J]. J. Geophys. Res., 2013, 118:2021- 2033
    [13] Pulkkinen T I, Palmroth M, Laitinen T. Energy as a tracer of magnetospheric processes: GUMICS-4 global MHD results and observations compared [J]. J. Atmos. Solar- Terr. Phy., 2008, 70:687-707
    [14] Palmroth M, Pulkkinen T I, Janhunen P, et al. Stormtime energy transfer in global MHD simulation [J]. J. Geophys. Res., 2003, 108:1048-1051
    [15] Wang C, Han J P, Li H, et al. Solar wind-magnetosphere energy coupling function fitting: Results from a global MHD simulation [J]. J. Geophys. Res., 2014, 119:6199- 6212
    [16] Hu Y Q, Guo X C, Li G Q, et al. Oscillation of quasisteady Earth’s magnetosphere [J]. Chin. Phys. Lett., 2005, 22:2723-2726
    [17] Hu Y Q, Guo X C,Wang C. On the ionospheric and reconnection potentials of the Earth: Results from global MHD simulations [J]. J. Geophys. Res., 2007, 112:A07215
    [18] Han J P, Wang C, Li H. Energetics characteristics of the super magnetic storm on November 20, 2003 based on 3D global MHD simulation [J]. Sci. China: Earth Sci., 2014, 57:3035-3046
    [19] LiW Y, Guo X C,Wang C. Spatial distribution of Kelvin- Helmholtz instability at low-latitude boundary layer under different solar wind speed conditions [J]. J. Geophys. Res., 2012, 117:A08230
    [20] Wang C, Zhang J J, Tang B B, et al. Comparison of equivalent current systems for the substorm event of 8 March 2008 derived from the global PPMLR-MHD model and the KRM algorithm[J]. J. Geophys. Res., 2011, 116:A07207
    [21] Wang C, Xia Z Y, Peng Z, et al. Estimating the open magnetic flux from the interplanetary and ionospheric conditions[J]. J. Geophys. Res., 2013, 118:1899-1903
    [22] Wang C, Guo X C, Peng Z, et al. Magnetohydrodynamics (MHD) numerical simulations on the interaction of the solar wind with the magnetosphere: A review [J]. Sci. China: Earth Sci., 2013, 56:1141-1157
    [23] Wang J Y, Wang C, Huang Z H, et al. Effects of the interplanetary magnetic field on the twisting of the magnetotail: Global MHD results [J]. J. Geophys. Res., 2014, 119:1887-1897
  • 加载中
计量
  • 文章访问数:  857
  • HTML全文浏览量:  9
  • PDF下载量:  1266
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-23
  • 修回日期:  2015-05-18
  • 刊出日期:  2015-11-15

目录

    /

    返回文章
    返回