留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于日心坐标系的三维立体剖分模型及编码

胡雅斯 宋君君 时蓬 段然

胡雅斯, 宋君君, 时蓬, 段然. 基于日心坐标系的三维立体剖分模型及编码[J]. 空间科学学报, 2016, 36(1): 106-116. doi: 10.11728/cjss2016.01.106
引用本文: 胡雅斯, 宋君君, 时蓬, 段然. 基于日心坐标系的三维立体剖分模型及编码[J]. 空间科学学报, 2016, 36(1): 106-116. doi: 10.11728/cjss2016.01.106
HU Yasi, SONG Junjun, SHI Peng, DUAN Ran. Study on 3D Subdivision Mode and Encoding in Heliocentric Coordination Systemormalsize[J]. Journal of Space Science, 2016, 36(1): 106-116. doi: 10.11728/cjss2016.01.106
Citation: HU Yasi, SONG Junjun, SHI Peng, DUAN Ran. Study on 3D Subdivision Mode and Encoding in Heliocentric Coordination Systemormalsize[J]. Journal of Space Science, 2016, 36(1): 106-116. doi: 10.11728/cjss2016.01.106

基于日心坐标系的三维立体剖分模型及编码

doi: 10.11728/cjss2016.01.106
详细信息
    通讯作者:

    胡雅斯,E-mail:hyssmily@163.com

  • 中图分类号: P353;TP391.9

Study on 3D Subdivision Mode and Encoding in Heliocentric Coordination Systemormalsize

  • 摘要: 随着空间数据的大量增长, 对数据可视化和数据存取效率提出了更高要求, 迫切需要对数据进行有效的组织和管理. 对庞大的日地空间, 采用SDOG-R方法将日地空间剖分为不同分辨率等级的格网, 并针对该网格提出相应的编 码方案. 以太阳风模型数据为例, 给出了具体的组织实例, 经实验验证, 该 剖分模型不仅解决了球心处网格过密问题, 还满足了径向分辨率大于经纬球 面分辨率的需求. 基于三维立体剖分的太阳风LOD空间数据模型, 不但能提供 多分辨率数据, 而且显著提高了大规模数据检索和存取速度, 有效地支持海量 空间数据的组织管理.

     

  • [1] CHENG Chengqi, GUO Hui. A pilot research on framework of Global Geographic Information System (G2IS)[J]. Geom. World, 2007, 1(6):25-27 (程承旗. 全球地理信息系统G2IS架 构体系初探[J]. 地理信息世界, 2007, 1(6):25-27)
    [2] CHENG Chengqi. Preliminary studies on geospatial information code model based on global subdivision model[J]. Geog. Geo-Inf. Sci., 2009, 25(4):2-5 (程承旗. 基于全球剖分模型的空间信息编码模型初探[J]. 地理与地理信息科学, 2009, 25(4):2-5)
    [3] HU Y, MENG X, PAN Z. Organization method for solar wind data with LOD technology[J]. J. Conv. Inf. Tech., 2013, 8(2):323-329
    [4] FENG Xueshang, XIANG Changqing, ZHONG Dingkun. Numerical study of interplanetary solar storms[J]. Sci. Sin. Terr., 2013, 43(6):912-933 (冯学尚, 向长青, 钟鼎坤. 行星际太阳风暴的数值模拟研究[J]. 中国科学: 地球科学, 2013, 43(6):912-933)
    [5] WANG Hechuang. Research on Key Technology of the Solar Wind System Simulation[D]. Chengdu: Chengdu University of Technology, 2012 (王合闯. 太阳风系统仿真与关键技术研 究[D]. 成都: 成都理工大学, 2012)
    [6] YANG Liping. 3-dimensional Numerical Study on the Background Solar Wind[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2011 (杨利平. 背景太阳风的三维数值模拟研究[D]. 北京: 中国科学院研究生院, 2011)
    [7] YE Zhanyin. Numerical Research about Coronal Mass Ejection[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2003 (叶占银. 日冕物质抛射的数值研究[D]. 北京: 中国科学院研究生院, 2003)
    [8] ZHOU Yufen. Three-dimensional Numerical Research of Coronal Mass Ejections[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2008 (周玉芬. 日冕物质抛射的三维数值模拟研究[D]. 北京: 中国科学院研究生院, 2008)
    [9] LUO H, CHEN G X, DU A M. Multi point observations of Pi2 pulsations and correlation with dynamic processes in the near-Earth magnetotail on March 18, 2009[J]. Sci. China: Earth Sci., 2014(2):359-371
    [10] LEE C, LUHMANN J G, ODSTRCIL D, et al. The solar wind at 1 AU during the declining phase of solar cycle 23: comparison of 3D numerical model results with observations[J]. Solar Phys., 2009, 254(1):155-183
    [11] WEBB D F, ALLEN J H. Spacecraft and ground anomalies related to the October-November 2003 solar activity[J]. Space Weather, 2004, 2(3):2-4
    [12] FENG Xueshang, XIANG Chagnqing, ZHONG Dingkun, et al. Comparative study of Ulysses observation and MHD simulation of the solar wind 3D structure[J]. Chin. Sci. Bull., 2005, 50(8):820-826 (冯学尚, 向长青, 钟鼎坤, 等. 三维太阳风结构的Ulysses观测和MHD模拟的比较研究[J]. 科学通报, 2005, 50(8):820-826)
    [13] XIE Yanqiong. Comprehensive Studies on Solar Sto-rm[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2007 (解妍琼. 太阳风暴的综合研究[D]. 北京: 中国科学院研究生院, 2007)
    [14] SHI Yong, WEI Fengsi, FENG Xueshang, et al. Three-dimensional MHD simulation of the solar wind structure observed by Ulysses[J]. Chin. Sci. Bull., 2001(6):511-514 (石勇, 魏奉思, 冯学尚, 等. Ulysses观测的太阳风结构的三维MHD模拟[J]. 科学通报, 2001(6):511-514)
    [15] WANG Chi. MHD simulation on the interaction of the solar wind with the magnetosphere[J]. Chin. J. Space Sci., 2011, 31(4):413-428 (王赤. 太阳风elax-elax磁层相互作 用的磁流体力学数值模拟研究[J]. 空间科学学报, 2011, 31(4):413-428)
    [16] XU Wenyao. Energy budget in the coupling process of the solar wind, magnetosphere and ionosphere[J]. Chin. J. Space Sci., 2011, 31(1):1-14 (徐文耀. 太阳风elax-elax 磁层elax-elax电离层耦合过程中的能量收支[J]. 空间科学学报, 2011, 31(1):1-14)
    [17] XIANG Changqing, FENG Xueshang, FAN Quanlin, et al. An observation-based model of solar wind background[J]. Chin. J. Space Sci., 2006, 26(3):161-166. In Chinese (向长青, 冯学尚, 范全林, 等. 一个基于观测的太阳风背景模型[J]. 空间科学学报, 2006, 26(3):161-166)
    [18] FENG Xueshang, XIANG Changqing, ZHONG Dingkun. The state-of-art of three-dimensional numerical study for corona-interplanetary process of solar storms[J]. Sci. Sin.: Terr., 2011, 41(1):1-28 (冯学尚, 向长青, 钟鼎坤. 太阳风暴的日冕行星际过程三维数值研究进展[J]. 中国科学: 地球科学, 2011, 41(1):1-28)
    [19] KAGEYAMA A, SATO T. The "Yin-Yang Grid": an over-set grid in spherical geometry[J]. Geochem. Geo-phys. Geosys., 2004(5):1-15
    [20] STEMMER K, HARDER H, HANSEN U. A new method to simulate convection with strongly temperature and pressure-dependent viscosity in a spherical shell: Applications to the Earth's mantle[J]. Phys. Earth Planet. Int., 2006, 157(3-4):223-247
    [21] BALLARD S, HIPP J R, YOUNG C J. Efficient and accurate calculation of ray theory seismic travel time through variable resolution 3d Earth models[J]. Seism. Res. Lett., 2009, 80(6):990-1000
    [22] STADLER G, GURNIS M, BURSTEDDE C. Thedynamics of plate teconics and mantle folw: from local toglobal scales georg stadler[J]. Science, 2010, 1(329):1033-1038
    [23] WU Lixin, SHI Wenzhong. A new QuaPA-based ID-coding method for global spatial data organization[J]. Geog. Geo-Inf. Sci., 2003, 19(5):1-5 (吴立新, 史文中. 基于QuaPA的无边界 GIS与全球空间编码新方法[J]. 地理与地理信息科学, 2003, 19(5):1-5)
    [24] YU Jieqing, WU Lixin. Geo-ontology logical structure and development technology for 3D geology modeling[J]. Geog. Geo-Inf. Sci., 2009, 25(1):1-2 (余接情, 吴立新. 球体退化八叉树网格编码与解码研究[J]. 地理与地理信息科学, 2009, 25(1):1-2)
    [25] WU Lixin, YU Jieqing. Global 3D-grid based on sphere degenerated octree and its distortion features[J]. Geog. Geo-Inf. Sci., 2009, 25(1):1-4 (吴立新, 余接情. 基于球体退化八叉树的全球三维格网与变形特征[J]. 地理与地理信息科学, 2009, 25(1):1-4)
    [26] YU Jieqing, WU Lixin. Adaptable spheroid degenerated-octree grid and its coding method[J]. Geog. Geo-Inf. Sci., 2012, 28(1):14-18 (余接情, 吴立新. 适应性球体退化八叉树格网及其编码方法[J]. 地理与地理信息科学, 2012,28(1):14-18)
    [27] TONG Xiaochong. Expression of spherical entities and generation of Voronoi diagram based on truncated icosahedron DGG[J]. Geom. Inf. Sci. Wuhan Univ., 2006, 31(11):428-435 (童晓冲. 全球多分辨率六边形网格剖分及地址编码规则[J]. 测绘学报, 2007, 36(4):428-435)
    [28] HU Yasi, SHI Peng, DUAN Ran. PDQG-R subdivision mode and encoding in heliocentric coordinate system[J]. Chin. J. Space Sci., 2015, 35(5):626-633 (胡雅斯, 时蓬, 段然. 基 于日心坐标系的PDQG-R剖分模型及编码研究[J]. 空间科学学报, 2015, 35(5):626-633)
  • 加载中
计量
  • 文章访问数:  668
  • HTML全文浏览量:  2
  • PDF下载量:  1060
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-26
  • 修回日期:  2015-05-17
  • 刊出日期:  2016-01-15

目录

    /

    返回文章
    返回