留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MST雷达数据的中纬对流层和低平流层大气行星波研究

汤蕾 黄春明

汤蕾, 黄春明. 基于MST雷达数据的中纬对流层和低平流层大气行星波研究[J]. 空间科学学报, 2016, 36(2): 175-187. doi: 10.11728/cjss2016.02.175
引用本文: 汤蕾, 黄春明. 基于MST雷达数据的中纬对流层和低平流层大气行星波研究[J]. 空间科学学报, 2016, 36(2): 175-187. doi: 10.11728/cjss2016.02.175
TANG Lei, HUANG Chunming. Mid-latitude Planetary Waves Observation from MST Radar Measurements in the Troposphere and Lower Stratosphere[J]. Journal of Space Science, 2016, 36(2): 175-187. doi: 10.11728/cjss2016.02.175
Citation: TANG Lei, HUANG Chunming. Mid-latitude Planetary Waves Observation from MST Radar Measurements in the Troposphere and Lower Stratosphere[J]. Journal of Space Science, 2016, 36(2): 175-187. doi: 10.11728/cjss2016.02.175

基于MST雷达数据的中纬对流层和低平流层大气行星波研究

doi: 10.11728/cjss2016.02.175
基金项目: 国家自然科学基金项目(41174126,41374152)和极地环境综合研究评估专项基金项目(CHINARE2015-02-03)共同资助
详细信息
    通讯作者:

    黄春明,E-mail:huangcm@whu.edu.cn

  • 中图分类号: P353

Mid-latitude Planetary Waves Observation from MST Radar Measurements in the Troposphere and Lower Stratosphere

  • 摘要: 通过分析中国河北香河站MST (Mesosphere-Stratosphere-Troposphere)雷达 2012-2014年的水平风场数据, 研究了北半球中纬地区对流层和低平流层 (Troposphere and Lower Stratosphere, TLS)区域大气行星波的特性. 谱分 析发现, 在这一区域准16天波和准10天波占据主导地位, 准16天波更为显著. 在 对流层区域, 行星波具有丰富的频谱成分, 活动具有间断性, 持续时间一般不 超过三个月, 并没有明显的季节性变化特征, 其中纬向分量的振幅大于经向分量. 在 平流层区域(高度17km以上), 行星波一般出现在冬季, 并且主要在纬向分量中. 通常平流层区域的振幅要小于对流层区域. 结合MERRA再分析资料分 析了强行星波传播特性, 结果表明: 2014年2-3月纬向分量中的准16天波垂 直向上传播, 垂直波长约为64km, 纬圈波数约为2, 纬向传播方向自西向东, 水平波长约为15324.7km, 对应的相速度为11.1m·s-1 (向东为正); 2014年5月纬向分量中的准10天波在10~18km高度范围内向下传播, 垂直波长约为50km, 纬圈波数约为1, 传播方向自西向东, 水平波长约为 30649.4km, 对应相速为35.5m·s-1.

     

  • [1] TAN Benkui. Advances of atmospheric of Rossby waves dynamics[J]. Acta Meteor. Sin., 2008, 66(6):870-879 (谭本馗. 大气Rossby波动力学的研究进展[J]. 气象学报, 2008, 66(6):870-879)
    [2] LI Aibing, ZHANG Lifeng, ZHANG Liang, et al. The effects of zonal non-uniform basic flow on adjustment of atmospheric long-wave[J]. Chin. J. Geophys., 2012, 55(4):1104-1113 (黎爱兵, 张立凤, 张亮, 等. 纬向非均匀基流对大气长波调整的作用[J]. 地球物 理学报, 2012, 55(4):1104-1113)
    [3] CHARNEY J G, DRAZIN P G. Propagation of planetary-scale disturbances from the lower into the upper atmosphere[J]. J. Geophys. Res., 1961, 66(1):83-109
    [4] ELIASSEN A, PALM E. On the transfer of energy in stationary mountain waves[J]. Geof. Publ. Norske Vid.-Akad. Oslo, 1961, 22(3):1-23
    [5] HUANG C M, ZHANG S D, YI F. Intensive radiosonde observations of the diurnal tide and planetary waves in the lower atmosphere over Yichang (111.18° E, 30.42° N), China[J]. Ann. Geophys., 2009, 27(3):1079-1095
    [6] LAWRENCE A R, JARVIS M J. Simultaneous observations of planetary waves from 30 to 220km[J]. J. Atmos. Solar-Terr. Phys., 2003, 65(6):765-777
    [7] MERZLYAKOV E G, SOLOVJOVA T V, YUDAKOV A A. The interannual variability of a 5~7 day wave in the middle atmosphere in autumn from ERA product data, Aura MLS data, and meteor wind data[J]. J. Atmos. Solar-Terr. Phys., 2013, 102(9):281-289
    [8] SMITH A K. The origin of stationary planetary waves in the upper mesosphere[J]. J. Atmos. Sci., 2003, 60(24): 3033-3041
    [9] HUANG K M, LIU A Z, ZHANG S D, et al. A nonlinear interaction event between a 16-day wave and a diurnal tide from meteor radar observations[J]. Ann. Geophys., 2013, 31(11):2039-2048
    [10] LI Yanjie, LI Jianping. Propagation of planetary waves in the horizontal non-uniform basic flow[J]. Chin. J. Geophys., 2012, 55(2):361-371 (李艳杰,李建平.水平非均匀基流中行星波的传播[J]. 地球物理学报, 2012, 55(2):361-371)
    [11] MTHEMBU S H, SIVAKUMAR V, MITCHELL N J, et al. Studies on planetary waves and tide interaction in the mesosphere/lower thermosphere region using meteor RADAR data from Rothera (68°S, 68°W), Antarctica[J]. J. Atmos. Solar-Terr. Phys., 2013, 102(1):59-70
    [12] LU Xian, ZHANG Shaodong. Radiosonde observation of planetary waves in the lower atmosphere over the center China[J]. Chin. J. Space Sci., 2005, 25(6):529-535 (鲁娴, 张绍东. 中国中部低层大气行星波无线电探空仪的观测研究[J]. 空 间科学学报, 2005, 25(6):529-535)
    [13] WANG Rui, ZHANG Shaodong, YI Fan. Radiosonde observations of high-latitude planetary waves in the lower atmosphere[J]. Sci. China: Earth Sci., 2010, 40(5):603-617 (王睿, 张绍东, 易帆. 高纬地区低层大气行星波的无线电探空仪观测研究[J]. 中国科学: 地球科学, 2010, 40(5):603-617)
    [14] ZHANG Xiaofang, YAN Wei. Advances in Studies on the exploration of the middle and upper atmosphere[J]. Sci. Meteor. Sin., 2007, 27(4):457-463 (张晓芳, 严卫. 中高层大气探测技术的研究进展[J]. 气象科学, 2007, 27(4):457-463)
    [15] LIU Libo, WAN Weixing. A brief overview on the issue on space physics and space weather[J]. Chin. J. Geophys., 2014, 57(11):3493-3501 (刘立波, 万卫星. 我国空间物理研究进展[J]. 地球物理学报, 2014, 57(11):3493-3501)
    [16] MA Guanglin, HU Xiong, XU Qingchen, et al. Investigation and application of FCA method for Langfang MF radar wind retrievals[J]. Chin. J. Space Sci., 2011, 31(5):618-626 (马广林,胡雄, 徐轻尘,等. 廊坊中频雷达风场FCA算法的研究及应用[J]. 空间科学学报, 2011, 31(5):618-626)
    [17] ZHAO Jiaying, XU Haiming. Comparison of wind velocity among reanalysis and radiosone datasets over China[J]. Climat. Environ. Res., 2014, 19(5):587-600 (赵佳莹, 徐海明. 中国区域探空资料与再分析资料风速场的对比分析[J]. 气候与环境研究, 2014, 19(5):587-600)
    [18] HUANG C, ZHANG S, ZHOU Q, et al. WHU VHF radar observations of the diurnal tide and its variability in the lower atmosphere over Chongyang (114.14°E, 29.53°N), China[J]. Ann. Geophys., 2015, 33(7):865-874
    [19] GLYNN E F, CHEN J, MUSHEGIAN A R. Detecting periodic patterns in unevenly spaced gene expression time series using Lomb-Scargle periodograms[J]. Bioin-formatics, 2006, 22(3):310-316
    [20] ZHANG S D, YI F. A statistical study of gravity waves from radiosonde observations at Wuhan (30°N, 114°E) China[J]. Ann. Geophys., 2005, 23(3):665-673
    [21] HUANG Ronghui, LIU Yong, HUANGFU Jingliang, et al. Characteristics and internal dynamical causes of the interdecadal variability of East Asian winter monsoon near the late 1990s[J]. Chin. J. Atmos. Sci., 2014, 38(4):627-644 (黄荣辉, 刘永, 皇甫静亮,等. 20世纪90年代末东亚冬季风年代际变化特征及其内动力成因[J]. 大气科学, 2014, 38(4):627-644)
    [22] HUANG R H, GAMBO K. On other wave guide in stationary planetary wave propagations in winter northern hemisphere[J]. Sci. China, 1984, 27(6):610-624
    [23] CHEN Wen. The interannual variations of propagation of quasi-stationary planetary waves in the northern hemisphere winter[J]. Progr. Nat. Sci., 2006, 16(4):485-489 (陈文. 北半球冬季准定常行星波传播的年 代际变化[J]. 自然科学进展, 2006, 16(4):485-489)
    [24] YANG Lei, CHEN Wen, HUANG Ronghui. The data analysis and numerical simulation of the climatology of quasi-stationary planetary waves in the northern hemisphere[J]. Chin. J. Atmos. Sci., 2006, 30(3):361-376 (杨蕾, 陈文, 黄荣辉. 北半球准定常行星波气候平均态的资料分析和数值模拟[J]. 大气科学, 2006, 30(3):361-376)
    [25] MATSUNO T. Vertical propagation of stationary planetary waves in the winter northern hemisphere[J]. J. Atmos. Sci., 1970, 27(1):871-883
  • 加载中
计量
  • 文章访问数:  1127
  • HTML全文浏览量:  3
  • PDF下载量:  1226
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-30
  • 修回日期:  2015-12-28
  • 刊出日期:  2016-03-15

目录

    /

    返回文章
    返回