Influence of Convection Effects of Solar Wind Speed on CME Transit Time
-
摘要: 基于Gopalswamy预报日冕物质抛射(CME)渡越时间的经验模型,选取1996-2007年间52个与地磁效应Dst<-50nT相关的CME事件以及10个引起特大磁暴(Dst<-200nT)的CME事件,结合ACE卫星在1AU处的太阳风观测资料,分析背景太阳风对流效应对CME到达1AU处渡越时间预报的影响.对于52个CME事件,考虑太阳风对流效应的影响后,预报的标准偏差由16.5h降为11.4h,修正后的误差分布趋向于高斯分布,并且68%事件的预报误差小于15h.对于10个引起特大磁暴的CME事件,考虑太阳风对流效应的影响后,预报的标准偏差由10.6h降低到6.5h,其中6个事件的预报误差小于5h.研究结果表明,对于CME事件,考虑背景太阳风对流效应的影响可以降低预报CME渡越时间的标准偏差,说明太阳风对流效应对预报CME事件渡越时间具有重要作用.Abstract: Based on the experiential predicting model, 52 CME events which cause geomagnetic storms Dst< -50nT, and 10 CME events which cause significant geomagnetic storms (Dst< -200nT) in 1996-2007 are selected, and mix with the observation data of interplanetary solar wind and ICME that are collected by ACE satellite at 1AU, convection effects of ambient solar wind speed on the CME transit time from the Sun to the Earth are analyzed. The results show that significant improvement on the predicting transit time of CME events after taking the convection effects into account has been obtained. For the 52 CME events of Dst< -50nT, the prediction standard difference is reduced from 16.5 to 11.4 hours, and the prediction error is less than 15 hours for 68% of these events. For the 10 CME events (Dst< -200nT), the prediction standard difference is reduced from 10.6 to 6.5 hours. Furthermore, the prediction error of 6 events among these 10 events is less than 5 hours. The study identifies the importance of convection effects of solar wind speed on the prediction of CME transit time.
-
Key words:
- Coronal mass ejection /
- Geomagnetic storm /
- Ambient solar wind speed
-
[1] LIU Zhenxing. Space Physics[M]. Harbin: Harbin Industry Press, 2005:342-352(刘振兴. 太空物理学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2005:342-352) [2] SRIVASTAVA N, VENKATAKRISHNAN P. Relationship between CME speed and geomagnetic stormintensity[J]. J. Geophys. Res., 2002, 29(9):1-1-1-4 [3] SRIVASTAVA N, VENKATAKRISHNAN P. Solar and interplanetary sources of major geomagnetic storms during 1996-2002[J]. J. Geophys. Res., 2004, 109: A10103.DOI: 10.1029/2003JA010175 [4] GOPALSWAMY N, LARA A, LEPPING R P. Interplanetary acceleration of coronal mass Ejections[J]. Geophys. Res. Lett., 2000, 27(2):145-148 [5] GOPALSWAMY N, LARA A, YASHIRO S, et al. Predicting the 1AU arrival times of coronal mass ejections[J]. J. Geophys. Res., 2001, 106(A12):29207-29217 [6] GOPALSWAMY N, LARA A, MANOHARAN P K, et al. An empirical model to predict the 1AU arrival of interplanetary shocks[J]. Adv. Space Res., 2005, 36:2289-2294 [7] WANG Y M, YE P Z, WANG S, et al. A statistical study on the geoeffectiveness of Earth-directed coronal mass ejections from March 1997 to December 2000[J]. J. Geophys. Res., 2002, 107(A11):SSH 2-1SSH 2-9 [8] WANG Y M, YE P Z, WANG S, et al. An interplanetary cause of large geomagnetic storms: fast forward shock over taking preceding magnetic cloud[J]. J. Geophys. Res., 2003, 30(13):33 [9] WANG Y M, XUE X H, SHEN C L, et al. Impact of major coronal mass ejections on geo-space during 2005 September 7-13[J]. Astrophys. J., 2006, 646:625-633 [10] MANOHARAN P K, GOPALSWAMY N, YASHIRO S, et al. Influence of coronal mass ejection interaction on propagation of interplanetary shocks[J]. J. Geophys. Res., 2004, 109:A06109. DOI: 10.1029/2003JA010300 [11] SCHWENN R, DAL LAGO A, HUTTUNEN E, GONZALEZ W D. The association of coronal mass ejections with their effects near the Earth[J]. Ann. Geophys., 2005, 23(3):1033-1059 [12] VRSNAK B, GOPALSWAMY N. Influence of aerodynamic drag on the motion of interplanetary ejecta[J]. J. Geophys. Res., 2002, 107(A2):SSH 2-1-SSH 2-6 [13] ZHANG J, DERE K P, HOWARD R A, et al. Identification of solar sources of major geomagnetic storms between 1996 and 2000[J]. Astrophys. J., 2003, 582:520-533 [14] ZHAO XINHUA. Statistical Analysis on the Solar-terrestrial Transients and Comprehensive Research on the Related Prediction Methods[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2007 [15] WEI F S, DRYER M. Propagation of solar flare-associated interplanetary shock waves in the heliospheric meridional plane[J]. Solar Phys., 1991, 132:373-394 [16] WEI F S, FENG X S, XU Y, et al. Prediction tests by using ISF method for the geomagnetic disturbances[J]. Adv. Space Res., 2005, 36(12):2363-2367 [17] OWENS M, CARGILL P. Predictions of the arrival time of coronal mass ejections at 1AU: an analysis of the causes of errors[J]. Ann. Geophys., 2004, 22:661-671 [18] XIE Y Q, WEI F S, FENG X S, et al. Prediction test for the two extremely strong solar storms in October 2003[J]. Solar Phys., 2006, 234(2):363-377 [19] ZHAN G Y, DU A M, FENG X S, et al. Simulated (STEREO) views of the solar wind disturbances following the coronal mass ejections of 1 August 2010[J]. Solar Phys., 2014, 289(1):319-338 [20] ZHAN G Y, DU A M, DU D, SUN W. Evaluation of a revised interplanetary shock prediction model: 1D CESE-HD-2 solar-wind model[J]. Solar Phys., 2014, 289(8):3159-3173 [21] LUO Hao, CHEN Gengxiong, DU Aimin, et al. Influence of the initial shock speed excited by solar flares on shock arrival time prediction[J]. Chin. J. Geophys., 2011, 54(8):1945-1952(罗浩, 陈耿雄, 杜爱民, 等. 耀斑引发的激波初始速度对激波到达时间预测的影响[J]. 地球物理学报, 2011, 54(8):1945-1952) -
-
计量
- 文章访问数: 1521
- HTML全文浏览量: 128
- PDF下载量: 898
-
被引次数:
0(来源:Crossref)
0(来源:其他)