留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太阳质子事件中短期预报模型研究

崔延美 师立勤 刘四清

崔延美, 师立勤, 刘四清. 太阳质子事件中短期预报模型研究[J]. 空间科学学报, 2017, 37(3): 262-269. doi: 10.11728/cjss2017.03.262
引用本文: 崔延美, 师立勤, 刘四清. 太阳质子事件中短期预报模型研究[J]. 空间科学学报, 2017, 37(3): 262-269. doi: 10.11728/cjss2017.03.262
CUI Yanmei, SHI Liqin, LIU Siqing. Study on the Short to Medium Term Forecast Model of Solar Proton Event[J]. Journal of Space Science, 2017, 37(3): 262-269. doi: 10.11728/cjss2017.03.262
Citation: CUI Yanmei, SHI Liqin, LIU Siqing. Study on the Short to Medium Term Forecast Model of Solar Proton Event[J]. Journal of Space Science, 2017, 37(3): 262-269. doi: 10.11728/cjss2017.03.262

太阳质子事件中短期预报模型研究

doi: 10.11728/cjss2017.03.262
详细信息
    作者简介:

    崔延美,ymcui@nssc.ac.cn

  • 中图分类号: P353

Study on the Short to Medium Term Forecast Model of Solar Proton Event

  • 摘要: 太阳质子事件通量的预测对航天器抗辐射加固设计和航天员出舱活动具有非常重要的意义.针对一年以下的航天任务,利用经验统计方法,确认太阳活跃年和太阳平静年期间,1——365天不同时间段内 > 10MeV,> 30MeV和 > 60MeV的太阳质子事件积分通量符合对数正态分布,且通量对数的标准偏差σ和期望值μ随任务期时间的变化满足对数函数形式.以此为基础,构建太阳质子通量的中短期预报模型.该模型能够针对太阳活跃年和太阳平静年,给出一定置信度下1——365天不同时间内 > 10MeV,> 30MeV和 > 60MeV的质子事件通量分布,从而为执行中短期航天任务提供太阳质子事件通量的预测,以规避不必要的风险.

     

  • [1] REAMES D V. Particle acceleration at the Sun and in the heliosphere[J]. Space Sci. Rev., 1999, 90:413-491
    [2] REAMES D V. The two sources of solar energetic particles[J]. Space Sci. Rev., 2013, 175:53-92
    [3] CANE H V, ROSENVINGE T, VON T, et al. Two components in major solar particle events[J]. Geophys. Res. Lett., 2003, 30(12):8017-8021
    [4] KING J H. Solar proton fluences for 1977——1983 space missions[J]. J. Spacec. Roc., 1974, 11(6):401-409
    [5] FEYNMAN J, ARMSTRONG T P, DAO-GIBNER L, et al. New interplanetary proton fluence model[J]. J. Spacec., 1990, 27:403-410
    [6] FEYNMAN J, SPITALE G, WANG J. Interplanetary proton fluence model: JPL 1991[J]. J. Geophys. Res., 1993, 98:13281-13295
    [7] XAPSOS M A, SUMMERS G P, SHAPIRO P, et al. New techniques for predicting solar proton fluences for radiation effects applications[J]. IEEE Trans. Nucl. Sci., 1996, 43(6):2772-2777
    [8] XAPSOS M A, SUMMERS G P, BURKE E A. Extreme value analysis of solar energetic proton peak fluxes[J]. Solar Phys., 1998, 183:157-164
    [9] XAPSOS M A, SUMMERS G P, BURKE E A. Probabi-lity model for peak fluxes of solar proton events[J]. IEEE Trans. Nucl. Sci., 1998, 45(6):2948-2953
    [10] XAPSOS M A, SUMMERS G P, BARTH J L, et al. Probabi-lity model for worst case solar proton event fluences[J]. IEEE Trans. Nucl. Sci., 1999, 46(6):1481-1485
    [11] XAPSOS M A, SUMMERS G P, BARTH J L, et al. Probability model for cumulative solar proton event fluences[J]. IEEE Trans. Nucl. Sci., 1999, 47(3):22-26
    [12] XAPSOS M A, BARTH J L, STASSINOPOULOS E G, et al. Characterizing solar proton energy spectra for radiation effects application[J]. IEEE Trans. Nucl. Sci., 2000, 47(6):2218-2223
    [13] NYMMIK R A. Averaged energy spectra of peak flux and fluence values in solar cosmic ray events[J]. Proc. 23th ICRC, 1993, 3(9):29-32
    [14] LI Tingting, SHI Liqin, LIU Siqing. Research on the solar proton fluence model[J]. Chin. J. Space Sci., 2010, 30(3):205-210 (李婷婷, 师立勤, 刘四清. 太阳质子通量模型研究[J]. 空间科学学报, 2010, 30(3):205-210)
    [15] WANG Jialong, ZHANG Xunjie, HUANG Zerong. A neural network method for solar proton events warning[J]. Chin. J. Astron. Astrophys., 1999, 19(3): 318-323 (王家龙, 张训械, 黄泽荣. 神经网络方法用于太阳质子事件警报[J]. 天文和天体物理学报, 1999, 19(3):318-323)
    [16] GONG Jiancun, XUE Bingsen, LIU Siqing, et al. Short-term prediction of solar proton events by neural network method[J]. J. Space Sci., 2004, 28(2):166-173 (龚建村, 薛炳森, 刘四清. 神经网络方法在太阳质子事件短期预报中的应用[J]. 空间科学学报, 2004, 28(2):166-173)
    [17] CUI Yanmei, LIU Siqing, WANG Huaning. Application of solar photospheric magnetic field properties in SPE short-term forecast[J]. Chin. J. Space Sci., 2010, 30(2):97-104 (崔延美, 刘四清, 王华宁. 太阳光球磁场特征物理量在质子事件短期预报中的应用[J]. 空间科学学报, 2010, 30(2):97-104)
    [18] LI Rong, CUI Yanmei. SPE short-term prediction mo-del with machine learning method[J]. Sci. China: Phys., Mech. Astron., 2010, 40(7):938-944 (李蓉, 崔延美. 应用机器学习方法的太阳质子事件短期预报模型[J]. 中国科学:物理学力学天文学, 2010, 40(7):938-944)
    [19] CUI Yanmei, LI Rong, LIU Siqing. SPE short-term forecast with photospheric magnetic field properties and traditional forecast factors[J]. Chin. J. Space Sci., 2011, 31(4):436-440 (崔延美, 李蓉, 刘四清. 结合光球磁场特征物理量的质子事件短期预报[J]. 空间科学学报, 2011, 31(4):436-440)
    [20] HECKMAN G R, KUNCHES J M, ALLEN J H. Prediction and evaluation of solar particle events based on precursor information[J]. Adv. Space Res., 1992, 12(2/3):313-320
    [21] CHRISTOPHER C B. SEC proton prediction model: verification and analysis[J]. Radiat. Meas., 1999, 30:231-250
    [22] CHRISTOPHER C B. Updated verification of the Space Weather Prediction Center's solar energetic particle prediction model[J]. Space weather, 2008, 6:S01001. DOI: 10.1029/2007SW000337
    [23] SMART D F, SHEA M A. PPS76: a computeri-zed event mode solar proton forecasting technique[C]//NOAA Solar-Terrestrial Predictions Proceedings, Boulder:NOAA, 1979:406-427
    [24] SMART D F, SHEA M A. PPS-87——A new event oriented solar proton prediction model[J]. Adv. Space Res., 1989, 9(10):281-284
    [25] SMART D F, SHEA M A. Modeling the time-intensity profile of solar flare generated particle fluxes in the inner heliosphere[J]. Adv. Space Res., 1992, 12(2/3):303-312
    [26] KAHLERA S W, CLIVERA E W, LINGB A G. Validating the proton prediction system (PPS)[J]. J. Atmos. Sol.-Terr. Phys., 2007, 69:43-49
    [27] XIONG Senlin, CUI Yanmei, LIU Siqing. Research on solar proton event warning with observation data of ACE satellite[J]. Chin. J. Space Sci., 2013, 33(4):387-395 (熊森林, 崔延美, 刘四清. 利用ACE卫星数据对太阳质子事件预警方法的研究[J]. 空间科学学报, 2013, 33(4):387-395)
    [28] CUI Yanmei, SHI Liqin, LIU siqing. Study on forecast of solar proton event fluence during short and medium term missions[J]. Manned Spaceflight, 2015, 21(6):597-602 (崔延美, 师立勤, 刘四清. 中短期太阳质子事件通量的预报研究[J]. 载人航天, 2015, 21(6):597-602)
  • 加载中
计量
  • 文章访问数:  793
  • HTML全文浏览量:  8
  • PDF下载量:  1333
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-17
  • 修回日期:  2016-11-07
  • 刊出日期:  2017-05-15

目录

    /

    返回文章
    返回