留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于激光雷达实测和动力学仿真方法研究中间层顶垂直风扰动特性

巴金 闫召爱 胡雄 郭商勇 郭文杰 程永强

巴金, 闫召爱, 胡雄, 郭商勇, 郭文杰, 程永强. 基于激光雷达实测和动力学仿真方法研究中间层顶垂直风扰动特性[J]. 空间科学学报, 2017, 37(5): 554-563. doi: 10.11728/cjss2017.05.554
引用本文: 巴金, 闫召爱, 胡雄, 郭商勇, 郭文杰, 程永强. 基于激光雷达实测和动力学仿真方法研究中间层顶垂直风扰动特性[J]. 空间科学学报, 2017, 37(5): 554-563. doi: 10.11728/cjss2017.05.554
BA Jin, YAN Zhaoai, HU Xiong, GUO Shangyong, GUO Wenjie, CHENG Yongqiang. Characteristics of Vertical Wind Perturbations in the Mesopause Region Based on Lidar Measurements and Dynamic Simulations ormalsize[J]. Journal of Space Science, 2017, 37(5): 554-563. doi: 10.11728/cjss2017.05.554
Citation: BA Jin, YAN Zhaoai, HU Xiong, GUO Shangyong, GUO Wenjie, CHENG Yongqiang. Characteristics of Vertical Wind Perturbations in the Mesopause Region Based on Lidar Measurements and Dynamic Simulations ormalsize[J]. Journal of Space Science, 2017, 37(5): 554-563. doi: 10.11728/cjss2017.05.554

基于激光雷达实测和动力学仿真方法研究中间层顶垂直风扰动特性

doi: 10.11728/cjss2017.05.554
基金项目: 

国家重点研发计划项目(2016YFB0501503),国家自然科学基金项目(41104100)和高分专项青年创新基金项目(GFZX04060103)共同资助

详细信息
    作者简介:

    巴金,E-mail:ba-xt@126.com

  • 中图分类号: P351

Characteristics of Vertical Wind Perturbations in the Mesopause Region Based on Lidar Measurements and Dynamic Simulations ormalsize

  • 摘要: 利用中国廊坊台站钠荧光多普勒激光雷达82h垂直风和水平风观测数据,统计得到中间层顶区域中存在10m·-1量级的垂直风扰动和纬向风扰动,其中垂直风扰动远远超过平均风速为-0.015m·-1的背景垂直风速.根据三维准单色重力波的极化关系和色散关系,对高中低三种频率重力波产生的垂直风扰动进行仿真,结果显示在满足短周期、大纬向风扰动条件下,高频重力波能够产生最大10m·-1量级的垂直风扰动,中频重力波能够产生10m·-1以内的垂直风扰动,低频重力波能产生1m·-1以内的垂直风扰动.理论条件下准单色重力波能够产生10m·-1量级的垂直风扰动,钠激光雷达观测到的最大10m·-1量级的垂直风扰动真实存在.研究结果可对高层大气垂直风场探测、垂直风场模拟和重力波参数化提供依据.

     

  • [1] LINDZEN R S. Wave-mean flow interactions in the upper atmosphere[J]. Bound.-Layer Meteor., 1973, 4 (1/2/3/4):327-343
    [2] FRITTS D C, WANG L, WERNE J. Gravity wave-fine structure interactions:A reservoir of small-scale and large-scale turbulence energy[J]. Geophys. Res. Lett., 2009, 36 (19):L19805
    [3] FRITTS D C, LUO Zhangai. Dynamical and radiative forcing of the summer mesopause circulation and thermal structure. 1:Mean solstice conditions[J]. J. Geophys. Res., 1995, 100 (D2):3119-3128
    [4] GARDNER C S, LIU A Z. Wave-induced transport of atmospheric constituents and its effect on the mesospheric Na layer[J]. J. Geophys. Res., 2010, 115 (D20):D20302
    [5] GARCIA R R, SOLOMON S. The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere[J]. J. Geophys. Res., 1985, 90 (D2):3850-3868
    [6] SMITH R W, HERNANDEZ G. Vertical winds in the thermosphere within the polar cap[J]. J. Atmos. Terr. Phys., 1995, 57 (6):611-620
    [7] GARDNER C S, YANG Weimin. Measurements of the dynamical cooling rate associated with the vertical transport of heat by dissipating gravity waves in the mesopause region at the Starfire Optical Range, New Mexico[J]. J. Geophys. Res., 1998, 103 (D14):16909-16926
    [8] ISHⅡ M, OYAMA S, NOZAWA S, et al. Dynamics of neutral wind in the polar region observed with two Fabry-Perot Interferometers[J]. Earth Planets Space, 1999, 51 (7/8):833-844
    [9] WILLIAMS B P, FRITTS D C, VANCE J D, et al. Sodium lidar measurements of waves and instabilities near the mesopause during the DELTA rocket campaign[J]. Earth Planets Space, 2006, 58 (9):1131-1137
    [10] YAN Zhaoai, HU Xiong, GUO Shengyong, et al. Long-term laser frequency stabilization for application in sodium resonance fluorescence Doppler lidar[C]//Proceedings of SPIE-International Symposium on Photoelectronic Detection and Imaging 2009:Laser Sensing and Imaging. Beijing:SPIE, 2009:738232
    [11] HU Xiong, YAN Zhaoai, GUO Shangyong, et al. Sodium fluorescence Doppler lidar to measure atmospheric temperature in the mesopause region[J]. Chin. Sci. Bull., 2011, 56 (4/5):417-423
    [12] XU Li, HU Xiong, CHENG Yongqiang, et al. Simulation of echo-photon counts of a Sodium Doppler Lidar and Retrievals of atmospheric parameters[J]. Chin. J. Geophys., 2010, 53 (7):1520-1528(徐丽, 胡雄, 程永强, 等. 钠多普勒激光雷达回波光子数仿真及大气参数反演[J]. 地球物理学报, 2010, 53 (7):1520-1528)
    [13] BILLS R E, GARDNER C S, FRANKE S J. Na Doppler/temperature lidar:Initial mesopause region observations and comparison with the Urbana medium frequency radar[J]. J. Geophys. Res., 1991, 96 (D12):22701-22707
    [14] SHE C Y, YU J R. Simultaneous three-frequency Na lidar measurements of radial wind and temperature in the mesopause region[J]. Geophys. Res. Lett., 1994, 21 (17):1771-1774
    [15] WANG Bo. Observational Study on the Quasi-Monochromatic Inertia Gravity Waves in Nearspace[D]. Beijing:National Space Science Center, Chinese Academy of Sciences, 2016(王博. 临近空间大气准单色惯性重力波观测研究[D]. 北京:中国科学院国家空间科学中心, 2016)
    [16] CHENG Yongqiang. Research and Observation of Relocatable Sodium Wind/Temperature Lidar[D]. Beijing:National Space Science Center, Chinese Academy of Sciences, 2016(程永强. 可重部署钠层测风测温激光雷达观测与研究[D]. 北京:中国科学院国家空间科学中心, 2016)
    [17] GARDNER C S, LIU A Z. Seasonal variations of the vertical fluxes of heat and horizontal momentum in the mesopause region at Starfire Optical Range, New Mexico[J]. J. Geophys. Res., 2007, 112 (D9):D09113
    [18] XU Li, HU Xiong, YAN Zhaoai, et al. Retrieval method of atmospheric parameters for a Sodium Doppler lidar[J]. Inf. Laser Eng., 2009, 38 (1):140-143, 159(徐丽, 胡雄, 闫召爱, 等. 钠多普勒激光雷达大气参数反演方法[J]. 红外与激光工程, 2009, 38 (1):140-143, 159)
    [19] HOLTON J R, ALEXANDER M J. The role of waves in the transport circulation of the middle atmosphere[M]//Atmospheric Science Across the Stratopause. Washington D C:American Geophysical Union, 2000:21-35. DOI: 10.1029/GM123p0021
    [20] XIAO C Y, HU X, ZHANG X X, et al. Interpretation of the mesospheric and lower thermospheric mean winds observed by MF radar at about 30°N with the 2D-SOCRATES model[J]. Adv. Space Res., 2007, 39 (8):1267-1277
    [21] FRITTS D C, ALEXANDER M J. Gravity wave dynamics and effects in the middle atmosphere[J]. Rev. Geophys., 2003, 41 (1):1003
    [22] SWENSON G R, ESPY P J. Observations of 2-dimensional airglow structure and Na density from the ALOHA, October 9, 1993‘Storm Flight’[J]. Geophys. Res. Lett., 1995, 22 (20):2845-2848
    [23] LI Zhenhua, LIU A Z, LU X, et al. Gravity wave characteristics from OH airglow imager over Maui[J]. J. Geophys. Res., 2011, 116 (D22):D22115
    [24] HICKEY M P, TAYLOR M J, GARDNER C S, et al. Full-wave modeling of small-scale gravity waves using Airborne Lidar and Observations of the Hawaiian Airglow (ALOHA-93) O(1S) images and coincident Na wind/temperature Lidar measurements[J]. J. Geophys. Res., 1998, 103 (D6):6439-6453
    [25] SWENSON G R, ALEXANDER M J, HAQUE R. Dispersion imposed limits on atmospheric gravity waves in the mesosphere:observations from OH airglow[J]. Geophys. Res. Lett., 2000, 27 (6):875-878
    [26] MANSON A H, MEEK C E, QIAN J, et al. Spectra of gravity wave density and wind perturbations observed during Arctic Noctilucent Cloud (ANLC-93) campaign over the Canadian Prairies:Synergistic airborne Na lidar and MF radar observations[J]. J. Geophys. Res., 1998, 103 (D6):6455-6465
    [27] ZHANG Shaodong, YI Fan, XIONG Donghui. A numerical study on the propagation characteristics of gravity-wave packets in real atmosphere[J]. Chin. J. Space Sci., 2002, 22 (1):36-43(张绍东, 易凡, 熊东辉. 重力波波包在真实大气中传播特性的数值研究[J]. 空间科学学报, 2002, 22 (1):36-43)
    [28] YUE Xianchang, YI Fan. A study of nonlinear propagation of 3D gravity-wave packets in a compressible atmosphere by using ADI scheme[J]. Chin. J. Space Sci., 2001, 21 (2):148-157(岳显昌, 易帆. 三维重力波非线性传播数值模型的一种求解格式[J]. 空间科学学报, 2001, 21 (2):148-157)
    [29] DING Feng. The Study of Atmospheric Gravity Wave Propagation Features Influenced by Background Winds[D]. Wuhan:Institute of Physics and Mathematics (WIPM) of Chinese Academy of Sciences, 2011(丁锋. 背景风场影响下大气重力波的传播特性研究[D]. 武汉:中国科学院研究生院(武汉物理与数学研究所), 2001)
    [30] LIU Xiao, XU Jiyao, LI Wenqiang, et al. Parallel numerical model for the simulation of three dimensional gravity wave's propagation[J]. Chin. J. Space Sci., 2009, 29 (6):563-572(刘晓, 徐寄遥, 李文强, 等. 模拟三维重力波传播过程的并行数值模式[J]. 空间科学学报, 2009, 29 (6):563-572)
    [31] BIAN Jianchun, CHEN Hongbin, LÜ Daren. Statistics of gravity waves in the lower stratosphere over Beijing based on high vertical resolution radiosonde[J]. Sci. China:Earth Sci., 2005, 48 (9):1548-1558(卞建春, 陈洪滨, 吕达仁. 用垂直高分辨率探空资料分析北京上空下平流层重力波的统计特性[J]. 中国科学D辑:地球科学, 2004, 34 (8):748-756)
    [32] HU Xiong, LIU A Z, GARDNER C S, et al. Characteristics of quasi-monochromatic gravity waves observed with Na Lidar in the mesopause region at Starfire Optical Range, NM[J]. Geophys. Res. Lett., 2002, 29 (24):22-1-22-4
    [33] ZHANG Shaodong, YI Fan, WANG Jingfang, et al. The nonlinear propagation of gravity wave packets in dissiptive atmosphere[J]. Chin. J. Space Sci., 1999, 19 (3):206-212(张绍东, 易帆, 王敬芳. 重力波波包在耗散大气中的非线性传播[J].空间科学学报, 1999, 19 (3):206-212)
    [34] WALTERSCHEID R L, SCHUBERT G. Nonlinear evolution of an upward propagating gravity wave:overturning, convection, transience and turbulence[J]. J. Atmos. Sci., 1990, 47 (1):101-125
    [35] DOU Xiankang, LI Tao, TANG Yihuan, et al. Variability of gravity wave occurrence frequency and propagation direction in the upper mesosphere observed by the OH imager in Northern Colorado[J]. J. Atmos. Solar Terr. Phys., 2010, 72 (5/6):457-462
    [36] LINDZEN R S. Turbulence and stress owing to gravity wave and tidal breakdown[J]. J. Geophys. Res., 1981, 86 (C10):9707-9714
    [37] FRITTS D C, BIZON C, WERNE J A, et al. Layering accompanying turbulence generation due to shear instability and gravity-wave breaking[J]. J. Geophys. Res., 2003, 108 (D8):8452
  • 加载中
计量
  • 文章访问数:  866
  • HTML全文浏览量:  4
  • PDF下载量:  663
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-19
  • 修回日期:  2017-05-10
  • 刊出日期:  2017-09-15

目录

    /

    返回文章
    返回