留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2008年4月24日行星际激波事件相关联的超热电子90°掷角的增强

孔凡婧 秦刚

孔凡婧, 秦刚. 2008年4月24日行星际激波事件相关联的超热电子90°掷角的增强[J]. 空间科学学报, 2019, 39(2): 143-148. doi: 10.11728/cjss2019.02.143
引用本文: 孔凡婧, 秦刚. 2008年4月24日行星际激波事件相关联的超热电子90°掷角的增强[J]. 空间科学学报, 2019, 39(2): 143-148. doi: 10.11728/cjss2019.02.143
KONG Fanjing, QIN Gang. 90°Pitch Angle Enhancements of Suprathermal Electrons Associated with the Interplanetary Shock on 24 April 2008[J]. Journal of Space Science, 2019, 39(2): 143-148. doi: 10.11728/cjss2019.02.143
Citation: KONG Fanjing, QIN Gang. 90°Pitch Angle Enhancements of Suprathermal Electrons Associated with the Interplanetary Shock on 24 April 2008[J]. Journal of Space Science, 2019, 39(2): 143-148. doi: 10.11728/cjss2019.02.143

2008年4月24日行星际激波事件相关联的超热电子90°掷角的增强

doi: 10.11728/cjss2019.02.143
基金项目: 

国家自然科学基金项目资助(NNSFC 41574172)

详细信息
    作者简介:

    孔凡婧,E-mail:fjkong@spaceweather.ac.cn

  • 中图分类号: P353

90°Pitch Angle Enhancements of Suprathermal Electrons Associated with the Interplanetary Shock on 24 April 2008

  • 摘要: 利用测试粒子数值模拟的方法研究了与STEREO-A卫星观测到的2008年4月24日行星际激波事件相关联的超热电子90°投掷角的增强.根据激波到达前给定时刻超热电子的观测分布,拟合得到不同投掷角的初始分布函数;在给定的激波参数下,采用时间向后的方法计算特定能道上激波下游超热电子的投掷角分布.由于超热电子具有较高的共振频率,模拟采用的磁场湍流谱包含了低能电子发生共振的耗散区.对以215.76,151.67,106.63,eV为中心的三个能道进行了模拟.结果表明,不同能道上超热电子在激波下游的投掷角分布均在90°投掷角附近出现峰值,呈现出明显的90°投掷角增强,这与观测结果符合得很好.可以认为在激波对电子的加速过程中,电子与湍流耗散区的共振对90°投掷角的增强具有重要作用.

     

  • [1] MONTGOMERY M D, BAME S J, HUNDHAUSEN A J. Solar wind electrons:vela 4 measurements[J]. J. Geophys. Res., 1968, 73(15):4999-5003
    [2] FELDMAN W C, ASBRIDGE J R, BAME S J, et al. Characteristic electron variations across simple highspeed solar wind streams[J]. J. Geophys. Res., 1978, 83(A11):5285-5295
    [3] PILIPP W G, MIGGENRIEDER H, MONTGOMERY M D, et al. Characteristics of electron velocity distribution functions in the solar wind derived from the Helios plasma experiment[J]. J. Geophys. Res., 1987, 92(A2):1075-1092
    [4] MAKSIMOVIC M, ZOUGANELIS I, CHAUFRAY J Y, et al. Radial evolution of the electron distribution functions in the fast solar wind between 0.3 and 1.5 AU[J]. J. Geophys. Res., 2005, 110(A9):A09104
    [5] LIN R P. Wind observations of suprathermal electrons in the interplanetary medium[J]. Space Sci. Rev., 1998, 86(1/2/3/4):61-78
    [6] LEMONS D S, FELDMAN W C. Collisional modification to the exospheric theory of solar wind halo electron pitch angle distributions[J]. J. Geophys. Res., 1983, 88(A9):6881-6887
    [7] PAGEL C, GARY S P, DE KONING C A, et al. Scattering of suprathermal electrons in the solar wind:ACE observations[J]. J. Geophys. Res., 2007, 112(A4):A04103
    [8] VOCKS C, MANN G. Generation of suprathermal electrons by resonant wave-particle interaction in the solar corona and wind[J]. Astrophys. J., 2003, 593(2):1134-1145
    [9] VOCKS C, SALEM C, LIN R P, et al. Electron halo and strahl formation in the solar wind by resonant interaction with whistler waves[J]. Astrophys. J., 2005, 627(1):540-549
    [10] SAITO S, GARY S P. Whistler scattering of suprathermal electrons in the solar wind:particle-in-cell simulations[J]. J. Geophys. Res., 2007, 112(A6):A06116
    [11] GOSLING J T, SKOUG R M, FELDMAN W C. Solar wind electron halo depletions at pitch angle[J]. Geophys. Res. Lett., 2001, 28(22):4155-4158
    [12] KAJDIC P, LAVRAUD B, ZASLAVSKY A, et al. Ninety degrees pitch angle enhancements of suprathermal electrons associated with interplanetary shocks[J]. J. Geophys. Res., 2014, 119(9):7038-7060
    [13] MATTHAEUS W H, GOLDSTEIN M L, ROBERTS D A. Evidence for the presence of quasi-two-dimensional nearly incompressible fluctuations in the solar wind[J]. J. Geophys. Res., 1990, 95(A12):20673-20683
    [14] ZANK G P, MATTHAEUS W H. Waves and turbulence in the solar wind[J]. J. Geophys. Res., 1992, 97(A11):17189-17194
    [15] BIEBER J W, WANNER W, MATTHAEUS W H. Dominant two-dimensional solar wind turbulence with implications for cosmic ray transport[J]. J. Geophys. Res., 1996, 101(A2):2511-2522
    [16] GRAY P C, PONTIUS D H JR, MATTHAEUS W H. Scaling of field-line random walk in model solar wind fluctuations[J]. Geophys. Res. Lett., 1996, 23(9):965-968
    [17] ZANK G P, LI G, FLORINSKI V, et al. Particle acceleration at perpendicular shock waves:Model and observations[J]. J. Geophys. Res., 2006, 111(A6):A06108
    [18] QIN G, KONG F J, ZHANG L H. Effects of shock and turbulence properties on electron acceleration[J]. Astrophys. J., 2018, 860(1):3-11
    [19] LI G, KONG X, ZANK G, et al. On the spectral hardening at 300 keV in solar flares[J]. Astrophys. J., 2013, 769(1):22
    [20] QIN G, MATTHAEUS W H, BIEBER J W. Subdiffusive transport of charged particles perpendicular to the large scale magnetic field[J]. Geophys. Res. Lett., 2002, 29(4):1048
    [21] QIN G, MATTHAEUS W H, BIEBER J W. Perpendicular transport of charged particles in composite model turbulence:Recovery of diffusion[J]. Astrophys. J. Lett., 2002, 578(2):L117-L120
    [22] KONG F J, QIN G, ZHANG L H. Numerical simulations of particle acceleration at interplanetary quasiperpendicular shocks[J]. Astrophys. J., 2017, 845(1):43
    [23] LIU Y D, LUHMANN J G, KAJDIC P, et al. Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections[J]. Nat. Commun., 2014, 5:3481
    [24] LIU Y, RICHARDSON J D, BELCHER J W, et al. Plasma depletion and mirror waves ahead of interplanetary coronal mass ejections[J]. J. Geophys. Res., 2006, 111(A9):A09108
    [25] LIU Y, RICHARDSON J D, BELCHER J W, et al. Temperature anisotropy in a shocked plasma:Mirror-mode instabilities in the heliosheath[J]. Astrophys. J. Lett., 2007, 659(1):L65-L68
  • 加载中
计量
  • 文章访问数:  937
  • HTML全文浏览量:  6
  • PDF下载量:  444
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-20
  • 修回日期:  2018-06-27
  • 刊出日期:  2019-03-15

目录

    /

    返回文章
    返回