留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

火星探测微流星体环境模型及风险预测

李昊 孔祥森 赵川

李昊, 孔祥森, 赵川. 火星探测微流星体环境模型及风险预测[J]. 空间科学学报, 2019, 39(3): 283-294. doi: 10.11728/cjss2019.03.283
引用本文: 李昊, 孔祥森, 赵川. 火星探测微流星体环境模型及风险预测[J]. 空间科学学报, 2019, 39(3): 283-294. doi: 10.11728/cjss2019.03.283
LI Hao, KONG Xiangsen, ZHAO Chuan. Model and Impact Risk Assessment of Meteoroid for Marsormalsize[J]. Journal of Space Science, 2019, 39(3): 283-294. doi: 10.11728/cjss2019.03.283
Citation: LI Hao, KONG Xiangsen, ZHAO Chuan. Model and Impact Risk Assessment of Meteoroid for Marsormalsize[J]. Journal of Space Science, 2019, 39(3): 283-294. doi: 10.11728/cjss2019.03.283

火星探测微流星体环境模型及风险预测

doi: 10.11728/cjss2019.03.283
详细信息
    作者简介:

    李昊,E-mail:hithaoli@126.com

  • 中图分类号: P185.82

Model and Impact Risk Assessment of Meteoroid for Marsormalsize

  • 摘要: 微流星体是自然存在的微型天体.在太阳系空间范围内,微流星体的主要起源为彗星及小行星.在地球至火星的空间范围内,微流星体的飞行速度范围为24.13~42.2km·-1.高速飞行的微流星体一旦撞击火星探测器,将有可能对探测器造成毁灭性的损害.本文基于太阳神探测器的观测结果及彗星轨道观测统计结果,针对火星探测,分别建立了地火转移段及环火飞行段的微流星体环境模型,并基于有限元离散方法建立了火星探测任务的微流星体碰撞风险预测方法.设计了一个虚拟火星探测器,分别对其在地火转移段及环火飞行段的微流星体撞击通量进行了分析.结果显示,在探测器有效任务期内,探测器正面受微流星撞击次数约为背面的10倍.根据本文模型计算结果,将探测器顶板铝合金蒙皮的厚度增加至0.7mm后,在整个任务周期内可将探测器正面受微流星体撞击出现击穿损伤的风险降低为每平米7次.

     

  • [1] JONES J. Meteoroid Engineering Model-Final Report[R]. Canada:University of Western Ontario, 2004
    [2] SCHONBERG W P. Protecting spacecraft against meteoroid and orbital debris impact damage an overview[J]. Space Debris, 1999, 1(3):195-210
    [3] YU Hui. Investigation on Risk Assessment for Spacecraft in Meteoroid Environment[D]. Harbin:Harbin Institute of Technology, 2007(于辉. 航天器微流星体环境风险评估技术研究[D]. 哈尔滨:哈尔滨工业大学, 2007)
    [4] ZHU Dangdang. Research on Ground Simulation Experiment of Micrometereoroid High-speed Impaction on Spacecraft Shield[D]. Harbin:Harbin Institute of Technology, 2012(朱凼凼. 微流星体高速撞击航天器防护结构地面模拟实验研究[D]. 哈尔滨:哈尔滨工业大学, 2012)
    [5] COUR-PALAIS B G. The Long-term Effects of The Micrometeroid and Orbital Debris Environments on Materials Used in Space[R]. Washington:NASA, 2005:257-280
    [6] YAN Jun, HAN Zengyao. Research on the meteoroid environment model in terrestrial space[J]. Spacecraft Eng., 2015, 14(2):23-30(闰军, 韩增尧. 近地空间微流星体环境模型研究[J]. 航天器工程, 2005, 14(2):23-30)
    [7] MCNAMARA H, SUGGS R, KAUFFMAN B, et al. Meteoroid Engineering Model (MEM):a meteoroid model for the inner solar system[J]. Earth Moon Planets, 2004, 95:123-139
    [8] SQUIRE M D, COOKE W J, WILLIAMSEN J, et al. Joint Polar Satellite System (JPSS) Micrometeoroid and Orbital Debris (MMOD) Assessment[R]. Washington:NASA, 2015
    [9] ESA. ExoMars 2016 and 2018 Missions Environmental Specification[R]. Paris:ESA, 2014
    [10] KEARSLEY A T, DROLSHAGEN G, MCDONNELL J A M, et al. Impacts on hubble space telescope solar arrays:Discrimination between natural and man-made particles[J]. Adv. Space Res., 2005, 35(7):1254-1262
    [11] CHAU J, GALINDO F R, HEINSELMAN C J, et al. Meteor-head echo observations using an antenna compression approach with the 450MHz poker flat incoherent scatter radar[J]. J. Atmos. Solar-Terr. Phys., 2009, 71(6/7):636-643
    [12] KESSLER D J. Meteoroids and Orbital Debris. Ch 8 in Space Station Program:Natural Environment Definition for Design of NASA Spacecraft[R]. Washington:NASA, 1993
    [13] SONG Lihong. Impact Effect of Optical Silica Glass in the Environment of Space Micro-debris[D]. Tianjin:Tian Jin University, 2012(宋丽红. 空间微小碎片环境下光学石英玻璃撞击效应[D]. 天津:天津大学, 2012)
    [14] LI Yanwei. Study on Damage Behavior of Optical Glass Impacted by Hypervelocity Microparticles[D]. Harbin:Harbin Institute of Technology, 2009(李延伟. 粉尘微粒子高速撞击光学玻璃损伤行为研究[D]. 哈尔滨:哈尔滨工业大学, 2009)
  • 加载中
计量
  • 文章访问数:  2922
  • HTML全文浏览量:  4
  • PDF下载量:  14700
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-20
  • 修回日期:  2018-10-17
  • 刊出日期:  2019-05-15

目录

    /

    返回文章
    返回