留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于一维模型的高频电波加热电离层F层数值研究

高泽 方涵先 刘赛赛 孙凌峰 白钧水 马杰

高泽, 方涵先, 刘赛赛, 孙凌峰, 白钧水, 马杰. 基于一维模型的高频电波加热电离层F层数值研究[J]. 空间科学学报, 2019, 39(5): 613-622. doi: 10.11728/cjss2019.05.613
引用本文: 高泽, 方涵先, 刘赛赛, 孙凌峰, 白钧水, 马杰. 基于一维模型的高频电波加热电离层F层数值研究[J]. 空间科学学报, 2019, 39(5): 613-622. doi: 10.11728/cjss2019.05.613
GAO Ze, FANG Hanxian, LIU Saisai, SUN Lingfeng, BAI Junshui, MA Jie. Numerical Study on High Frequency Radio Wave Heating Ionosphere F Layer Based on One-dimensional Model[J]. Chinese Journal of Space Science, 2019, 39(5): 613-622. doi: 10.11728/cjss2019.05.613
Citation: GAO Ze, FANG Hanxian, LIU Saisai, SUN Lingfeng, BAI Junshui, MA Jie. Numerical Study on High Frequency Radio Wave Heating Ionosphere F Layer Based on One-dimensional Model[J]. Chinese Journal of Space Science, 2019, 39(5): 613-622. doi: 10.11728/cjss2019.05.613

基于一维模型的高频电波加热电离层F层数值研究

doi: 10.11728/cjss2019.05.613 cstr: 32142.14.cjss2019.05.613
详细信息
    作者简介:
    • 高泽,gaoze_mail@sina.com
  • 中图分类号: P352

Numerical Study on High Frequency Radio Wave Heating Ionosphere F Layer Based on One-dimensional Model

  • 摘要: 基于电离层一维仿真加热模型,详细介绍了模型中电子的动量方程、连续性方程、能量方程和各类参量表达式,利用对角矩阵追赶法数值求解电离层F层加热过程,分析了不同时次电子数密度和电子温度的变化,讨论了不同频率和不同功率电波加热的情形.结果表明:当高频电波加热高电离层时,电子温度迅速增加,并很快趋近于饱和状态;电子密度的变化较为迟缓,但在加热过程中其变化幅度却越来越大;电子密度变化量在沿磁场方向上形成空洞和上下稠团两峰一谷构型;频率越大、功率越高的电波加热时,电子密度的变化也越大,但存在一适值频率的电波对电子温度的影响最小.

     

  • [1] TANG Xiaodong, HAN Yunjie, ZHOU Wenyu. Skywave over-the-horizon backscatter radar[C]//2001 CIE International Conference on Radar. Beijing:IEEE, 2001:90-94
    [2] HU Y, ZHAO Z, ZHANG Y. Ionospheric disturbances produced by chemical releases and the resultant effects on short-wave ionospheric propagation[J]. J. Geophys. Res., 2011, 116(A7).DOI: 10.1029/2011JA016438
    [3] HE Fang. A Study of the Space Information Link Modified by Ground-based Powerful High Frequency Radio Waves[D]. Wuhan:Wuhan University, 2009(何昉. 地基大功率无线电波加热电离层对空间信息链路影响研究[D]. 武汉:武汉大学, 2009)
    [4] HEADRICK J M. Looking over the horizon[J]. IEEE Spectrum, 1990, 27(7):36-39
    [5] GONDARENKO N A, OSSAKOW S L, MILIKH G M. Generation and evolution of density irregularities due to self-focusing in ionospheric modifications[J]. J. Geophys. Res., 2005, 110(A9).DOI: 10.1029/2005JA011142
    [6] GENNADY M, ALEX G, KIRIL Z, et al. Perturbations of GPS signals by the ionospheric irregularities generated due to HF heating at triple of electron gyrofrequency[J]. Geophys. Res. Lett., 2008, 35(22).DOI:10. 1029/2008GL035527
    [7] LOFAS H, IVCHENKO N, GUSTAVSSON B, et al. F-region electron heating by X-mode radiowaves in underdense conditions[J]. Ann. Geophys., 2009, 27(6):2585-2592
    [8] ZHAO Zhengyu, WEI Hanying. General dispersion relation for the three-wave process of parametric excitation Ⅱ[J]. Chin. J. Space Sci., 2005, 25(1):17-22(赵正予, 魏寒颖. 参量激励过程中三波耦合的一般色散关系(Ⅱ)[J]. 空间科学学报, 2005, 25(1):17-22)
    [9] NI Binbin, ZHAO Zhengyu, XIANG Wei, et al. Numerical modeling of ionosphere modification with powerful HF pump waves[J]. J. Radio Sci., 2004, 19(3):274-289(倪彬彬, 赵正予, 项薇, 等. 高频泵波加热电离层的数值模拟[J]. 电波科学学报, 2004, 19(3):274-289)
    [10] DENG Feng, ZHAO Zhengyu, SHI Run, et al. Two-dimensional simulation of high frequency induced large scale irregularities in F region[J]. Acta Phys. Sin., 2009, 58(10):7382-7390(邓峰, 赵正予, 石润, 等. 中低纬电离层加热大尺度场向不均匀体的二维数值模拟[J]. 物理学报, 2009, 58(10):7382-7390)
    [11] WANG Feng, ZHAO Zhengyu, ZHANG Yuannong. Numerical modeling of ionospheric current artificial modulation at low latitude[J]. Chin. J. Geophys., 2009, 52(4):887-894(汪枫, 赵正予, 张援农. 低纬地区电离层电流的人工调制数值模拟[J]. 地球物理学报, 2009, 52(4):887-894)
    [12] XU Bin, WANG Zhange, XUE Kun, et al. 2D numerical simulation of artificial ionospheric heating in polar region[J]. J. Radio Sci., 2010, 25(1):14-20(徐彬, 王占阁, 薛昆, 等. 极区二维人工电离层加热数值仿真[J]. 电波科学学报, 2010, 25(1):14-20)
    [13] WANG Zhange, XU Bin, XU Zhengwen, et al. A comparison of numerical simulation and measurements during ionospheric heating[J]. Chin. J. Geophys., 2012, 55(3):751-759(王占阁, 徐彬, 许正文, 等. 极区电离层加热的数值模拟与实验对比[J]. 地球物理学报, 2012, 55(3):751-759)
    [14] CHENG Musong. A Study of Polar Ionospheric Heating Experiments and Abnormal Incoherent Scattering Spectra[D]. Xi'an:Xidian University, 2015(程木松. 极区电离层加热实验及异常非相干散射谱研究[D]. 西安:西安电子科技大学, 2015)
    [15] DENG Feng, ZHAO Zhengyu, ZHOU Chen, et al. Research of ionospheric ionosphere instability excited in mid and low latitude HF heating[J]. Chin. J. Geophys., 2010, 53(1):10-21(邓峰, 赵正予, 周晨, 等. 高频电波加热中低纬电离层激励不稳定性研究[J]. 地球物理学报, 2010, 53(1):10-21)
    [16] BANKS P M, KOCKARTS G. Aeronomy (Part A and Part B)[M]. New York:Academic Press, 1973
    [17] BERNHARDT P A, DUNCAN L M. The feedback-diffraction theory of ionospheric heating[J]. J. Atmos. Solar-Terr. Phys., 1982, 44(12):1061-1074
    [18] DJUTH F T, SULZER M P, ELDER J H. High resolution observations of HF-induced plasma waves in the ionosphere[J]. Geophys. Res. Lett., 1990, 17(11):1893-1896
    [19] HANSEN J D, MORALES G J, MAGGS J E. Large-scale HF-induced ionospheric modifications:theory and modeling[J]. J. Geophys. Res. Atmos., 1992, 97(A1):113-122
    [20] DUBOIS D F, ROSE H A, RUSSELL D. Excitation of strong Langmuir turbulence in plasmas near critical density:Application to HF heating of the ionosphere[J]. J. Geophys. Res. Atmos., 1990, 95(A12):21221-21272
    [21] BELENOV A F, ERUKHIMOV L M, PONOMARENKO P V, et al. Interaction between artificial ionospheric turbulence and geomagnetic pulsations[J]. J. Atmos. Solar-Terr. Phys., 1997, 59(18):2367-2372
    [22] STUBBE P, VARNUM W S. Electron energy transfer rates in the ionosphere[J]. Planet. Space Sci., 1972, 20(8):1121-1126
    [23] STUBBE P. A new collisional relaxation model for small deviations from equilibrium[J]. J. Plasma Phys., 1987, 38(11):95-116
    [24] FU Zhufeng, HU Youqiu. Numerical Simulations of Space Plasma[M]. Hefei:Anhui Science and Technology Press, 1995
  • 加载中
计量
  • 文章访问数:  1428
  • HTML全文浏览量:  220
  • PDF下载量:  89
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2018-12-05
  • 修回日期:  2019-06-10
  • 刊出日期:  2019-09-15

目录

    /

    返回文章
    返回