留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电子密度同化的热层大气密度预报方法

张亚楠 吴小成 胡雄

张亚楠, 吴小成, 胡雄. 基于电子密度同化的热层大气密度预报方法[J]. 空间科学学报, 2019, 39(5): 629-637. doi: 10.11728/cjss2019.05.629
引用本文: 张亚楠, 吴小成, 胡雄. 基于电子密度同化的热层大气密度预报方法[J]. 空间科学学报, 2019, 39(5): 629-637. doi: 10.11728/cjss2019.05.629
ZHANG Yanan, WU Xiaocheng, HU Xiong. Thermospheric Density Prediction Based on Electron Density Assimilation[J]. Journal of Space Science, 2019, 39(5): 629-637. doi: 10.11728/cjss2019.05.629
Citation: ZHANG Yanan, WU Xiaocheng, HU Xiong. Thermospheric Density Prediction Based on Electron Density Assimilation[J]. Journal of Space Science, 2019, 39(5): 629-637. doi: 10.11728/cjss2019.05.629

基于电子密度同化的热层大气密度预报方法

doi: 10.11728/cjss2019.05.629
基金项目: 

国家重点研发计划项目(2016YFB0501503)和国家自然科学基金项目(41204137)共同资助

详细信息
    作者简介:

    张亚楠,zhangyanan@nssc.ac.cn

  • 中图分类号: P351

Thermospheric Density Prediction Based on Electron Density Assimilation

  • 摘要: 采用热层电离层耦合模式TIEGCM和集合卡尔曼滤波同化方法,利用同化COSMIC电离层掩星电子密度数据优化热层电离层参量,并将模式预报的大气密度与CHAMP卫星大气密度数据进行对比,分别开展模拟和实测数据的同化预报实验.在模拟数据同化实验中,状态向量包含温度、风场和离子成分的实验结果表明,仅优化温度即可达到最优的热层大气密度预报效果.在实测数据同化实验中,将温度作为状态向量参数,优化结果表明,循环同化过程中模式预报的大气密度相对偏差的均方根误差在48h内从38%减小到27%,同化稳定时间至少需要30h.预报过程中大气密度预报效果的改善持续时间为34h.这表明电子密度同化能够改善热层大气密度的预报精度,设计的实验方案合理可行,可获得较长的预报时效.

     

  • [1] MARCOS F, LAI S, HUANG C, et al. Towards next level satellite drag modeling[C]//AIAA Atmospheric and Space Environments Conference, Reston:AIAA, 2010
    [2] JACCHIA L G. New static models of the thermosphere and exosphere with empirical temperature profiles[J]. Sao Spec. Rep., 1971, 313:3138-3144
    [3] HEDIN A E, SALAH J E, EVANS J V, et al. A global thermospheric model based on mass-spectrometer and incoherent-scatter data MSIS, 1. N2 density and temperature[J]. J. Geophys. Res., 1977, 82:2139-2147
    [4] BARLIER F, BERGER C, FALIN J L, et al. Thermospheric model based on satellite drag data[J]. Ann. De Geophys., 1978, 34:9-24
    [5] BRUINSMA S, THUILLIER G, BARLIER F. The DTM-2000 empirical thermosphere model with new data assimilation and constraints at lower boundary:accuracy and properties[J]. J. Atmos. Sol.-Terr. Phys., 2003, 65:1053-1070
    [6] MARCOS F. New satellite drag modeling capabilities[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevoda:AIAA, 2006. DOI: 10.2514/6.2006-470
    [7] MARCOS F A, KENDRA M J, GRIFFIN J M, et al. Precision low Earth orbit determination using atmospheric density calibration[J]. J. Astronaut. Sci., 1998, 46:395-409
    [8] MIAO Juan, LIU Siqing, LI Zhitao, et al. Atmospheric density calibration using the real-time satellite observation[J]. Chin. J. Space Sci., 2011, 31(4):459-466(苗娟, 刘四清, 李志涛, 等. 基于实时观测数据的大气密度模式修正[J]. 空间科学学报, 2011, 31(4):459-466)
    [9] CHEN Xuxing, HU Xiong, XIAO Cunying, et al. Correction method of the low earth orbital neutral density prediction based on the satellites data and NRLMSISE-00 model[J]. Chin. J. Geophys., 2013, 56(10):3246-3254(陈旭杏, 胡雄, 肖存英, 等. 基于卫星数据和NRLMSISE-00模型的低轨道大气密度预报修正方法[J]. 地球物理学报, 2013, 56(10):3246-3254)
    [10] LI Xie, TANG Geshi, LI Zheng, et al. A method for calibrating empirical density model based on temperature parameters[J]. Mann. Spaceflight., 2015, 21(1):48-52(李勰, 唐歌实, 李正, 等. 基于温度参数的经验密度模式修正方法[J]. 载人航天, 2015, 21(1):48-52)
    [11] RICHMOND A D, RIDLEY E C, ROBLE R G. A thermosphere/ionosphere general-circulation model with coupled electrodynamics[J]. Geophys. Res. Lett., 1992, 19:601-604
    [12] RIDLEY A J, DENG Y, TOTH G. The global ionosphere-thermosphere model[J]. J Atmos. Sol.-Terr. Phys., 2006, 68:839-864
    [13] FULLER-ROWELL T, WU F, AKMAEV R, et al. A whole atmosphere model simulation of the impact of a sudden stratospheric warming on thermosphere dynamics and electrodynamics[J]. J. Geophys. Res. Space Phys., 2010, 115.DOI: 10.1029/2010JA015524
    [14] LIU H L, FOSTER B T, HAGAN M E, et al. Thermosphere extension of the whole atmosphere community climate model[J]. J. Geophys. Res., 2010, 115.DOI:10. 1029/2010JA015586
    [15] MOROZOV A V, RIDLEY A J, BERNSTEIN D S, et al. Data assimilation and driver estimation for the Global Ionosphere-Thermosphere Model using the ensemble adjustment Kalman filter[J]. J. Atmos. Sol.-Terr. Phys., 2013, 104:126-136
    [16] MATSUO T, LEE I T, ANDERSON J L. Thermospheric mass density specification using an ensemble Kalman filter[J]. J. Geophys. Res., 2013, 118:1339-1350
    [17] EMMERT J T, HERNANDEZ G, JARVIS M J, et al. Climatologies of nighttime upper thermospheric winds measured by ground-based Fabry-Perot interferometers during geomagnetically quiet conditions:2. High-latitude circulation and interplanetary magnetic field dependence[J]. J. Geophys. Res., 2006, 111.DOI: 10.1029/2006JA011948
    [18] MAKELA J J, FISHER D J, MERIWETHER J W, et al. Near-continual ground-based nighttime observations of thermospheric neutral winds and temperatures over equatorial Brazil from 2009 to 2012[J]. J. Atmos. Sol.-Terr. Phys., 2013, 103:94-102
    [19] DATTA-BARUA S, BUST G S, CROWLEY G, et al. Neutral wind estimation from 4-D ionospheric electron density images[J]. J. Geophys. Res., 2009, 114.DOI:10. 1029/2008JA014004
    [20] SCHERLIESS L, THOMPSON D C, SCHUNK R W. Ionospheric dynamics and drivers obtained from a physics-based data assimilation model[J]. Radio Sci., 2009, 44(1). DOI: 10.1029/2008rs004068
    [21] MATSUO T, ARAUJO-PRADERE E A. Role of thermosphere-ionosphere coupling in a global ionospheric specification[J]. Radio Sci., 2011, 46.DOI: 10.1029/2010RS004576
    [22] ZHANG Y N, WU X C, HU X. Effects of estimating the ionospheric and thermospheric parameters on electron density forecasts[J]. Sci. China Earth Sci., 2018, 61(12):1875-1887
    [23] HSU C T, MATSUO T, WANG W B, et al. Effects of inferring unobserved thermospheric and ionospheric state variables by using an Ensemble Kalman Filter on global ionospheric specification and forecasting[J]. J. Geophys. Res., 2014, 119:9256-9267
    [24] CHARTIER A T, MATSUO T, ANDERSON J L, et al. Ionospheric data assimilation and forecasting during storms[J]. J. Geophys. Res., 2016, 121:764-778
    [25] CHEN C H, LIN C H, MATSUO T, et al. Ionospheric data assimilation with thermosphere-ionosphere-electrodynamics general circulation model and GPS-TEC during geomagnetic storm conditions[J]. J. Geophys. Res., 2016, 121:5708-5722
    [26] ZHANG Yanan, Wu Xiaocheng, HU Xiong. TIEGCM ensemble Kalman filter assimilation model design and premilinary results[J]. Chin. J. Space Sci., 2017, 37(2):168-176(张亚楠, 吴小成, 胡雄. TIEGCM集合卡尔曼滤波同化模型设计及初步试验[J]. 空间科学学报, 2017, 37(2):168-176)
    [27] ROBLE R G, RIDLEY E C, RICHMOND A D, et al. A coupled thermosphere/ionosphere general circulation model[J]. Geophys. Res. Lett., 1988, 15(12):1325-1328
    [28] QIAN L, SOLOMON S C. Thermospheric density:an overview of temporal and spatial variations[J]. Space Sci. Rev., 2012, 168(1-4):147-173
    [29] EVENSEN G. The ensemble Kalman filter:theoretical formulation and practical implementation[J]. Ocean Dyn., 2003, 53:343-367
    [30] EVENSEN G. Data Assimilation:the Ensemble Kalman Filter[M]. New York:Springer, 2006
    [31] REIGBER CH, LüHR H, SCHWINTZER P. Champ mission status[J]. Adv. Space Res., 2002, 30(2):129-134
    [32] SUTTON E K, NEREM R S, FORBES J M. Density and winds in the thermosphere deduced from accelerometer data[J]. J. Spacecraft Rockets, 2007, 44(6):1210-1219
    [33] ROBLE R G. Energetics of the mesosphere and thermosphere. The upper mesosphere and lower thermosphere:a review of experiment and theory[J]. Geophys. Monograph Ser., 1995, 87:1-21
    [34] MATSUO T, FORBES J M. Principal modes of thermospheric density variability:empirical orthogonal function analysis of CHAMP 2001-2008 data[J]. J Geophys. Res., 2010, 115.DOI: 10.1029/2009JA015109
    [35] JEE G, BURNS A G, WANG W, et al. Duration of an ionospheric data assimilation initialization of a coupled thermosphere-ionosphere model[J]. Space Weather, 2007, 5(1).DOI: 10.1029/2006sw000250
  • 加载中
计量
  • 文章访问数:  454
  • HTML全文浏览量:  13
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-26
  • 修回日期:  2019-04-05
  • 刊出日期:  2019-09-15

目录

    /

    返回文章
    返回