留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MGEX北斗差分码偏差两种精确处理方法对比分析

梅登奎 闻德保

梅登奎, 闻德保. MGEX北斗差分码偏差两种精确处理方法对比分析[J]. 空间科学学报, 2019, 39(5): 662-669. doi: 10.11728/cjss2019.05.662
引用本文: 梅登奎, 闻德保. MGEX北斗差分码偏差两种精确处理方法对比分析[J]. 空间科学学报, 2019, 39(5): 662-669. doi: 10.11728/cjss2019.05.662
MEI Dengkui, WEN Debao. Comparative Analysis of Two Precise Processing Methods for MGEX BDS Differential Code Biases[J]. Chinese Journal of Space Science, 2019, 39(5): 662-669. doi: 10.11728/cjss2019.05.662
Citation: MEI Dengkui, WEN Debao. Comparative Analysis of Two Precise Processing Methods for MGEX BDS Differential Code Biases[J]. Chinese Journal of Space Science, 2019, 39(5): 662-669. doi: 10.11728/cjss2019.05.662

MGEX北斗差分码偏差两种精确处理方法对比分析

doi: 10.11728/cjss2019.05.662 cstr: 32142.14.cjss2019.05.662
基金项目: 

国家自然科学基金项目资助(41674040)

详细信息
    作者简介:
    • 梅登奎,mei_dk@163.com
    通讯作者:
    • 闻德保,E-mail:wdbwhigg@gzhu.edu.cn
  • 中图分类号: P352

Comparative Analysis of Two Precise Processing Methods for MGEX BDS Differential Code Biases

  • 摘要: 差分码偏差是北斗卫星导航系统(BDS)在高精度定位和电离层建模中需精确处理的系统误差之一.利用MGEX发布的2017年全年和2018年6月的BDS卫星的差分码偏差数据,比较分析了DLR和CAS分别解算的BDS卫星差分码偏差的日解值、月平均值和稳定性的变化特性.分析结果表明,DLR与CAS估算的BDS卫星差分码偏差值差异不大,具有较好的一致性;2017年CAS估算的BDS卫星C2I-C6I差分码偏差稳定性略优于DLR,C2I-C7I差分码偏差稳定性与DLR相当,且均具有较高稳定性;2018年6月DLR C2I-C6I差分码偏差月平均值稳定性优于CAS;C2I-C7I差分码偏差的稳定性明显优于C2I-C6I差分码偏差,卫星差分码偏差月平均值稳定性优于日解值稳定性.

     

  • [1] WANG Ningbo. Study on GNSS Differential Code Biases and Global Broadcast Ionospheric Models of GPS, Galileo and BDS[D]. Wuhan:Institute of Geodesy and Geophysics, Chinese Academy of Sciences, 2016(王宁波. GNSS差分码偏差处理方法及全球广播电离层模型研究[D]. 武汉:中国科学院测量与地球物理研究所, 2016)
    [2] YUAN Yunbin, OU Jikun. The effects of instrumental bias in GPS observations on determining ionospheric delays and the methods of its calibration[J]. Acta Geod. Cartogr. Sin., 1999, 28(2):110-114(袁运斌, 欧吉坤. GPS观测数据中的仪器偏差对确定电离层延迟的影响及处理方法[J]. 测绘学报, 1999, 28(2):110-114)
    [3] LIU Qiankun, SUI Lifen, XIAO Guorui, et al. Quality analysis of MGEX BDS differential code bias[J]. J. Geod. Geodyn., 2016, 36(11):963-967, 1002(刘乾坤, 隋立芬, 肖国锐, 等. MGEX北斗差分码偏差产品质量分析[J]. 大地测量与地球动力学, 2016, 36(11):963-967, 1002)
    [4] ZHANG Qiang, ZHAO Qile, ZHANG Hongping, et al. BDS differential code bias estimation using Beidou experimental tracking stations[J]. Geomat. Inform. Sci. Wuhan Univ., 2016, 41(12):1649-1655(张强, 赵齐乐, 章红平, 等. 利用北斗观测实验网解算北斗卫星差分码偏差[J]. 武汉大学学报:信息科学版, 2016, 41(12):1649-1655)
    [5] MONTENBRUCK O, HAUSCHILD A, STEIGENBERGER P. Differential code bias estimation using multi-GNSS observations and global ionosphere maps[J]. Navigation, 2014, 6(13):191-201
    [6] JIN Shuanggen, JIN Rui, LI Du. Assessment of Beidou differential code bias variations from multi-GNSS network observations[J]. Ann. Geophys., 2016, 34(2):259-269
    [7] FAN Jiachen,WU Xiaoli, LI Yuxiang, et al. COMPASS satellites DCB parameter accuracy assessment based on tri-frequency data[J]. Chin. Space Sci. Technol., 2013, 33(4):62-70(樊家琛, 吴晓莉, 李宇翔, 等. 基于三频数据的北斗卫星导航系统DCB参数精度评估方法[J]. 中国空间科学技术, 2013, 33(4):62-70)
    [8] SHU Bao, LIU Hui, ZHANG Ming, et al. Evaluation and analysis of BDS instrumental biases[J]. Geomat. Inform. Sci. Wuhan Univ., 2016, 41(2):279-284(舒宝, 刘晖, 张明, 等. 北斗系统硬件延迟解算及精度分析[J]. 武汉大学学报:信息科学版, 2016, 41(2):279-284)
    [9] WANG Ningbo, YUAN Yunbin, LI Zishen, et al. Determination of differential code biases with multi-GNSS observations[J]. J. Geod., 2016, 90(3):209-228
    [10] LI Zishen, YUAN Yunbin, LI Hui, et al. Two-step method for the determination of the differential code biases of COMPASS satellites[J]. J. Geod., 2012, 86:1059-1076
    [11] LIU Chen, LIU Changjian, BAO Yadong, et al. Some problems pertinent to shell height in ionospheric modeling[J]. Chin. J. Space Sci., 2018, 38(1):37-47(刘宸, 刘长建, 鲍亚东, 等. 电离层薄层高度对电离层模型化的影响[J]. 空间科学学报, 2018, 38(1):37-47)
    [12] HERNANDEZ-PAJARES M, JUAN J, SANZ J, et al. The IGS VTEC maps:A reliable source of ionospheric information since 1998[J]. J. Geod., 2009, 83(3):263-275
    [13] ZHANG Baocheng, TEUNISSEN P J G, YUAN Yunbin, et al. A modified carrier-to-code leveling method for retrieving ionospheric observables and detecting short-term temporal variability of receiver differential code biases[J]. J. Geod., 2018, 93(1):19-28
    [14] LI Zishen, YUAN Yunbin, WANG Ningbo, et al. SHPTS:towards a new method for generating precise global ionospheric TEC map based on spherical harmonic and generalized trigonometric series functions[J]. J. Geod., 2015, 89(4):331-345
    [15] ZHAO Wenjiao, WANG Hu, DANG Yamin, et al. Characteristics of multi-GNSS global ionospheric modeling and analysis of the accuracy[J]. Chin. J. Space Sci., 2015, 35(3):306-314(赵文娇, 王虎, 党亚民, 等. 多GNSS全球电离层建模特性及其精度检验[J]. 空间科学学报, 2015, 35(3):306-314)
    [16] JIN Yaqi, ZHANG Donghe, LIU Yumei, et al. Influence of ionospheric variability in solar maximum and solar minimum period on the stability of estimated GPS instrumental biases[J]. Chin. J. Space Sci., 2013, 33(4):427-435(金亚奇, 张东和, 刘玉梅, 等. 不同太阳活动条件下电离层形态对估算GPS系统硬件延迟的影响[J]. 空间科学学报, 2013, 33(4):427-435)
  • 加载中
计量
  • 文章访问数:  1768
  • HTML全文浏览量:  156
  • PDF下载量:  92
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2018-12-03
  • 修回日期:  2019-02-26
  • 刊出日期:  2019-09-15

目录

    /

    返回文章
    返回