Parameter Identification of Drag-free System Based on Extended State Observer
-
摘要: 分析了卫星无拖曳控制系统的在轨参数辨识问题,由于无拖曳系统的不稳定性质,需要设计控制器使其稳定,在此基础上进行闭环辨识.根据自抗扰控制原理,设计了扩张状态观测器以估计系统不同控制回路的扰动和状态,基于状态和扰动估计值设计控制器使系统稳定.提出了基于扩张状态观测器(ESO)的多输入多输出系统闭环参数辨识方法.为提高实际应用中的辨识效果,引入积分型滤波器对观测状态中的噪声进行抑制.将这种方法应用于类似LISA Pathfinder的单轴无拖曳模型,对系统动力学参数进行估计,通过数值仿真实验验证了该辨识方法的有效性和实用性.Abstract: In this paper, in-orbit parameter identification problem of drag-free control system is studied. Since the drag-free system is not stable, it is necessary to design controllers to stablize this system, then the system can be identificated. According to the principle of active disturbance rejection control, the extended state observer is designed to estimate the disturbance and state of different control loops of the system. Based on the state and disturbance estimation values, the controller is designed to stabilize the system. A closed-loop parameter identification method for multi-input and multi-output systems based on extended state observer is proposed. In order to improve the identification effect in practical applications, the noise in the observed state is suppressed by introducing an integral filter, and the noise suppression mechanism is theoretically explained. Finally, this method is applied to a single-axis non-drag model similar to LISA Pathfinder, and the system dynamics parameters are estimated. The numerical simulation experiments have verified the validity and practicability of the proposed identification method.
-
Key words:
- Drag-free /
- Parameter identification /
- Extended state observer
-
[1] ARMANO M, BENEDETTI M, BOGENSTAHL J, et al. LISA Pathfinder:the experiment and the route to LISA[J]. Class. Quantum. Gravity, 2009, 26(9):1159-1165 [2] ZIEGLER T, FICHTER W. Test mass stiffness estimation for the LISA Pathfinder drag-free system[R]//Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, series GNC. Hilton Head:AIAA, 2007:2007-6669 [3] JATEGAONKAR R V. Flight Vehicle System Identification:A Time-Domain Methodology[M]. Reston:American Institute of Aeronautics and Astronautics, Inc., 2015 [4] GUILHERME M S, FILHO W C L, THEIL S. Strategies for in-orbit calibration of drag-free control systems[J]. Aerosp. Sci. Technol., 2008, 12(5):365-375 [5] HUANG Yuancan, HAN Jingqing. Constinuous-time system identification with the extended states observer[J]. Control Decision, 1998, 13(4):381-384(黄远灿, 韩京清. 扩张状态观测器用于连续系统辨识[J]. 控制与决策, 1998, 13(4):381-384) [6] ZHANG Rong, HAN Jingqing. Parameter identification by model compensation auto disturbance rejection controller[J]. Control Theory Appl., 2000, 17(1):79-81(张荣, 韩京清. 用模型补偿自抗扰控制器进行参数辨识[J]. 控制理论与应用, 2000, 17(1):79-81) [7] NIE Zhuoyun, GUO Dongsheng, LIU Ruijuan, et al. Parameter identification for adjustable system based on extended state observer and experimental study[J]. Control Decision, 2017, 32(10):1905-1909(聂卓赟, 郭东生, 刘瑞娟, 等. 基于扩张状态观测器的可调系统参数辨识与实验[J]. 控制与决策, 2017, 32(10):1905-1909) [8] PRADELS G, TOUBOUL P. In-orbit calibration approach of the microscope experiment for the test of the equivalence principle at 10e-15[J]. Class. Quantum. Gravity, 2003, 20:2677 [9] GRYNAGIER A, ZIEGLER T, FICHTER W. Identification of dynamic parameters for a one-axis drag-free gradiometer[J]. IEEE Trans. Aerosp. Electron. Syst., 2013, 49(1):341-355 [10] CONGEDO G, FERRAIOLI L, HUELLER M, et al. Time domain maximum likelihood parameter estimation in LISA Pathfinder data analysis[J]. Phys. Rev. D:Particles Fields, 2012, 85(12):341-369 [11] NOFRARIAS M, FERRAIOLI L, CONGEDO G, et al. Parameter estimation in LISA Pathfinder operational exercises[J]. J. Phys.:Conf. Ser., 2012, 363(1):425-429 [12] ZHENG Q, CHEN Z, GAO Z. A practical approach to disturbance decoupling control[J]. Control Eng. Pract., 2009, 17(9):1016-1025 [13] GAO Z. Scaling and bandwidth-parameterization based controller tuning[C]//Proceedings of the American Control Conference. Denver:Colorado, 2003:4989-4996 [14] XIAO Deyun. Theory of System Identification with Applications[M]//Beijing:Tsinghua University Press, 2014(萧德云. 系统辨识理论及应用[M]. 北京:清华大学出版社, 2014) [15] ANTONUCCI F, ARMANO M, AUDLEY H, et al. From laboratory experiments to LISA Pathfinder:achieving LISA geodesic motion[J]. Class. Quantum. Gravity, 2011, 28(9):2075-2085 [16] GATH P, FICHTER W, KERSTEN M, et al. Drag free and attitude control system design for the LISA Pathfinder mission[C]//AIAA Guidance, Navigation & Control Conference & Exhibit. Providence, Rhode Island:AIAA, 2004 -
-
计量
- 文章访问数: 1306
- HTML全文浏览量: 145
- PDF下载量: 70
-
被引次数:
0(来源:Crossref)
0(来源:其他)