留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SIP-AMR-CESE模式对CR2055背景太阳风的模拟

王静 李会超

王静, 李会超. SIP-AMR-CESE模式对CR2055背景太阳风的模拟[J]. 空间科学学报, 2019, 39(6): 719-729. doi: 10.11728/cjss2019.06.719
引用本文: 王静, 李会超. SIP-AMR-CESE模式对CR2055背景太阳风的模拟[J]. 空间科学学报, 2019, 39(6): 719-729. doi: 10.11728/cjss2019.06.719
WANG Jing, LI Huichao. Simulation of CR2055 Solar Wind with SIP-AMR-CESE Model[J]. Chinese Journal of Space Science, 2019, 39(6): 719-729. doi: 10.11728/cjss2019.06.719
Citation: WANG Jing, LI Huichao. Simulation of CR2055 Solar Wind with SIP-AMR-CESE Model[J]. Chinese Journal of Space Science, 2019, 39(6): 719-729. doi: 10.11728/cjss2019.06.719

SIP-AMR-CESE模式对CR2055背景太阳风的模拟

doi: 10.11728/cjss2019.06.719 cstr: 32142.14.cjss2019.06.719
基金项目: 

国家自然科学基金项目资助(41504132,41874202)

详细信息
    作者简介:
    • 李会超,E-mail:hcli@swl.ac.cn
  • 中图分类号: P353

Simulation of CR2055 Solar Wind with SIP-AMR-CESE Model

  • 摘要: 使用三维太阳行星际自适应网格守恒元解元太阳风模型(SIP-AMR-CESE MHD),模拟从太阳表面到地球轨道附近的太阳风.该模型使用六片网格技术,同时利用PARAMESH软件包实现网格自适应.在该模型的基础上,通过增加广义拉格朗日乘子(GLM)磁场散度误差消去方法,完善网格加密放粗判据,微调加速加热形式等方法,使模拟结果与观测更好地符合.另外,通过控制不同时刻的计算区域,显著提高了模型的计算效率.在此基础上,给出了模型改进后模拟得到的CR2055太阳风稳态解与观测的对比分析.

     

  • [1] FENG Xueshang, XIANG Changqing, ZHONG Dingkun. Numerical study of interplanetary solar storms[J]. Sci. Sin.:Terr., 2013, 43:912-933(冯学尚, 向长青, 钟鼎坤. 行星际太阳风暴的数值模拟研究[J]. 中国科学:地球科学, 2013, 43:912-933)
    [2] FENG Xueshang, XIANG Changqing, ZHONG Dingkun. Advances in Three-Dimensional numerical study of coronal planetary processes in solar storms[J]. Sci. Sin.:Terr., 2011, 41(1):1-28(冯学尚, 向长青, 钟鼎坤. 太阳风暴的日冕行星际过程三维数值研究进展[J]. 中国科学:地球科学, 2011, 41(1):1-28)
    [3] AKASOFU S I, FRY C F. A first generation numerical geomagnetic storm prediction scheme[J]. Planet. Space Sci., 1986, 34:77-92
    [4] GÁBOR Tóth, SOKOLOV I V, GOMBOSI T I, et al. Space weather modeling framework:A new tool for the space science community[J]. J. Geophys. Res., 2005, 110:A12226
    [5] LIEMOHN M W, WELLING D T, DE ZEEUW D, et al. Real-time SWMF at CCMC:Assessing the Dst output from continuous operational simulations[J]. Space Weather, 2018, 16(10):1583-1603
    [6] DETMAN T, SMITH Z, DRYER M, et al. A hybrid heliospheric modeling system:Background solar wind[J]. J. Geophys. Res.:Space Phys., 2006, 111:A07102
    [7] INTRILIGATOR D S, DETMAN T, GLOECKER G, et al. Pickup protons:Comparisons using the three-dimensional MHD HHMS-PI model and Ulysses SWICS measurements[J]. J. Geophys. Res.:Space Phys., 2012, 117(A6):A06104
    [8] TAKTAKISHVILI A, KUZNETSOVA M, MACNEICE P, et al. Validation of the coronal mass ejection predictions at the Earth orbit estimated by ENLIL heliosphere cone model[J]. Space Weather, 2016, 7(3):S03004
    [9] NAKAMIZO A, TANAKA T, KUBO Y, et al. Development of the 3-D MHD model of the solar corona-solar wind combining system[J]. J. Geophys. Res.:Space Phys., 2009, 114(A7):A07109
    [10] FENG Xueshang, ZHOU Yufen, WU S T. A novel numerical implementation for solar wind modeling by the modified conservation element/solution element method[J]. Astrophys. J., 2007, 655(2):1110-1126
    [11] FENG Xueshang, ZHANG Shaohua, XIANG Changqing, et al. A hybrid solar wind model of the CESE+HLL method with a Yin-Yang overset grid and an AMR grid[J]. Astrophys. J., 2011, 734(1):50
    [12] YANG Liping, FENG Xueshang, XIANG Changqing, et al. Simulation of the unusual solar minimum with 3D SIP-CESE MHD model by comparison with multi-satellite observations[J]. Sol. Phys., 2011, 271(1-2):91-110
    [13] FENG Xueshang, YANG Liping, XIANG Changqing, et al. Validation of the 3D AMR SIP-CESE solar wind model for four carrington rotations[J]. Sol. Phys., 2012, 279:207-229
    [14] ZHOU Yufen, FENG Xueshang. MHD numerical study of the latitudinal deflection of coronal mass ejection[J]. J. Geophys. Res.:Space Phys., 118:6007-6018
    [15] ZHAO Xinhua, FENG Xueshang, ZHOU Yufen. Using a 3-D MHD simulation to interpret propagation and evolution of a coronal mass ejection observed by multiple spacecraft:The 3 April 2010 event[J]. J. Geophys. Res.:Space Phys., 119:9321-9333
    [16] BRACKBILL J U, BARNES D C. The effect of nonzero product of magnetic gradient and B on the numerical solution of the magnetohydrodynamic equations[J]. J. Comp. Phys., 1980, 35(7254):165
    [17] DELLAR P J. A note on magnetic monopoles and the one-dimensional mhd Riemann problem[J]. J. Comp. Phys., 2001, 172(1):392-398
    [18] EVANS C R, HAWLEY J F. Simulation of general relativistic magnetohydrodynamic flows:A constrained transport method, Astrophys[J]. Genomics, 1988, 2(1):14-24
    [19] ZIEGLER U. A central-constrained transport scheme for ideal magnetohydrodynamics[J]. J. Comp. Phys., 2004, 196(2):393-416
    [20] BALSARA D S. Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics[J]. J. Comp. Phys., 2008, 228(14):5040-5056
    [21] JIANG G S, WU C C. A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics[J]. J. Comput. Phys., 1999, 150(2):561-594
    [22] RAMSHAW J D. A method for enforcing the solenoidal condition on magnetic field in numerical calculations[J]. J. Comp. Phys., 1983, 52(3):592-596
    [23] POWELL K, ROE P, MYONG R, et al. An upwind scheme for magnetohydrodynamics[C]//12th Computational Fluid Dynamics Conference, San Diego:American Institute of Aeronautics and Astronautics, 1995:1704
    [24] POWELL K G, ROE P L, LINDE T J, et al. A solution-adaptive upwind scheme for ideal magnetohydrodynamics[J]. J. Comp. Phys., 1999, 154(2):284-309
    [25] DEDNER A, KEMM F, KRONER D, et al. Hyperbolic divergence cleaning for the MHD equations[J]. J. Comp. Phys., 2002, 175(2):645-673
    [26] MIGNONE A, TZEFERACOS P. A second-order unsplit Godunov scheme for cell-centered MHD:The CTU-GLM scheme[J]. J. Comp. Phys., 2010, 229(6):2117-2138
    [27] MIGNONE A, TZEFERACOS P, BODO G, et al. High-order conservative finite difference GLM-MHD schemes for cell-centered MHD[J]. J. Comp. Phys., 2010, 229(17):5896-5920
    [28] YALIM M S, ABEELE D V, LANI A, et al. A finite volume implicit time integration method for solving the equations of ideal magnetohydrodynamics for the hyperbolic divergence cleaning approach[J]. J. Comp. Phys., 2011, 230(15):6136-6154
    [29] ABBO L, OFMAN L, ANTIOCHOS S K, et al. Slow solar wind:Observations and modeling[J]. Space Sci. Rev., 2016, 201(1-4):55-108
    [30] ARGE C N, PIZZO V J. Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates[J]. J. Geophys. Res.:Space Phys., 2000, 105(A5):10465-10479
    [31] FENG Xueshang, YANG Liping, XIANG Changqing, et al. Three-dimensional solar WIND modeling from the Sun to Earth by a SIP-CESE MHD model with a six-component Grid[J]. Astrophys. J., 2010, 723(1):300
    [32] GOMBOSI T I, DE ZEEUW D L, POWELL K G, et al. Adaptive mesh refinement for global magnetohydrodynamic simulation[J]. Lect. Not. Phys., 2003, 615:247-274
    [33] TANAKA T. Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulation of inhomogeneous systems including strong background potential fields[J]. J. Comp. Phys., 1994, 111(2):381-389
    [34] JANHUNEN P, PALMROTH M, LAITINEN T, et al. The GUMICS-4 global MHD magnetosphere-ionosphere coupling simulation[J]. J. Atmos. Sol.:Terr. Phys., 2012, 80(3):48-59
    [35] TÓTH G, BART V D H, SOKOLOV I V, et al. Adaptive numerical algorithms in space weather modeling[J]. J. Comp. Phys., 2012, 231(3):870-903
    [36] BART V D H, MANCHESTER IV W B, FRAZIN R A, et al. A data-driven, two-temperature solar wind model with Alfven waves[J]. Astrophys. J., 2010, 725(1):1373
    [37] CHEN Yao. Multi-fluid Solar Wind Models[D]. Hefei:University of Science and Technology of China, 2004(陈耀. 多成分太阳风模型[D]. 合肥:中国科学技术大学, 2004)
    [38] ENDEVE E, LEER E, HOLZER T E. Two-dimensional magnetohydrodynamic models of the solar corona:mass loss from the streamer belt[J]. Astrophys. J., 2003, 589(2):1040
    [39] TOMA G D. Evolution of coronal holes and implications for high-speed solar wind during the minimum between cycles 23 and 24[J]. Sol. Phys., 2011, 274(1/2):195-217
    [40] LEER E, HOLZER T E. Energy addition in the solar wind[J]. J. Geophys. Res. Space, 1980, 85(A9):4681-4688
  • 加载中
计量
  • 文章访问数:  1122
  • HTML全文浏览量:  135
  • PDF下载量:  87
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2018-10-22
  • 修回日期:  2019-10-08
  • 刊出日期:  2019-11-15

目录

    /

    返回文章
    返回