Simulation of CR2055 Solar Wind with SIP-AMR-CESE Model
-
摘要: 使用三维太阳行星际自适应网格守恒元解元太阳风模型(SIP-AMR-CESE MHD),模拟从太阳表面到地球轨道附近的太阳风.该模型使用六片网格技术,同时利用PARAMESH软件包实现网格自适应.在该模型的基础上,通过增加广义拉格朗日乘子(GLM)磁场散度误差消去方法,完善网格加密放粗判据,微调加速加热形式等方法,使模拟结果与观测更好地符合.另外,通过控制不同时刻的计算区域,显著提高了模型的计算效率.在此基础上,给出了模型改进后模拟得到的CR2055太阳风稳态解与观测的对比分析.
-
关键词:
- MHD方程组 /
- 广义拉格朗日乘子 /
- 日冕行星际太阳风模拟
Abstract: In this paper, the three-dimensional (3D) Solar-Interplanetary (SIP) Adaptive Mesh Refinement (AMR) space-time Conservation Element and Solution Element (CESE) MHD (SIP-AMR-CESE MHD) model is used to simulate solar wind from the solar surface to the Earth's orbit. The model uses a six-component grid system and the PARAMESH software package to implement adaptive mesh refinement. Based on the model, the Generalized Lagrange Multiplier (GLM) was added to eliminate the divergence error of magnetic field in the simulation of solar wind. Heating-method was adjusted so that the model can produce a more distinct fast and slow solar wind structure. An improved grid refinement criterion, accompanied by GLM addition and heating-method adjustment, making the simulation results more consistent with the observations. Moreover, the computational efficiency of the model was improved by controlling the computation range at different times. By using the improved model, the steady state solution of CR2055 solar wind was obtained and it showed a good agreement with the observations. In this paper, we gave some useful methods to make the solar wind simulation more efficient and consistent with the observations. This work is very meaningful. -
[1] FENG Xueshang, XIANG Changqing, ZHONG Dingkun. Numerical study of interplanetary solar storms[J]. Sci. Sin.:Terr., 2013, 43:912-933(冯学尚, 向长青, 钟鼎坤. 行星际太阳风暴的数值模拟研究[J]. 中国科学:地球科学, 2013, 43:912-933) [2] FENG Xueshang, XIANG Changqing, ZHONG Dingkun. Advances in Three-Dimensional numerical study of coronal planetary processes in solar storms[J]. Sci. Sin.:Terr., 2011, 41(1):1-28(冯学尚, 向长青, 钟鼎坤. 太阳风暴的日冕行星际过程三维数值研究进展[J]. 中国科学:地球科学, 2011, 41(1):1-28) [3] AKASOFU S I, FRY C F. A first generation numerical geomagnetic storm prediction scheme[J]. Planet. Space Sci., 1986, 34:77-92 [4] GÁBOR Tóth, SOKOLOV I V, GOMBOSI T I, et al. Space weather modeling framework:A new tool for the space science community[J]. J. Geophys. Res., 2005, 110:A12226 [5] LIEMOHN M W, WELLING D T, DE ZEEUW D, et al. Real-time SWMF at CCMC:Assessing the Dst output from continuous operational simulations[J]. Space Weather, 2018, 16(10):1583-1603 [6] DETMAN T, SMITH Z, DRYER M, et al. A hybrid heliospheric modeling system:Background solar wind[J]. J. Geophys. Res.:Space Phys., 2006, 111:A07102 [7] INTRILIGATOR D S, DETMAN T, GLOECKER G, et al. Pickup protons:Comparisons using the three-dimensional MHD HHMS-PI model and Ulysses SWICS measurements[J]. J. Geophys. Res.:Space Phys., 2012, 117(A6):A06104 [8] TAKTAKISHVILI A, KUZNETSOVA M, MACNEICE P, et al. Validation of the coronal mass ejection predictions at the Earth orbit estimated by ENLIL heliosphere cone model[J]. Space Weather, 2016, 7(3):S03004 [9] NAKAMIZO A, TANAKA T, KUBO Y, et al. Development of the 3-D MHD model of the solar corona-solar wind combining system[J]. J. Geophys. Res.:Space Phys., 2009, 114(A7):A07109 [10] FENG Xueshang, ZHOU Yufen, WU S T. A novel numerical implementation for solar wind modeling by the modified conservation element/solution element method[J]. Astrophys. J., 2007, 655(2):1110-1126 [11] FENG Xueshang, ZHANG Shaohua, XIANG Changqing, et al. A hybrid solar wind model of the CESE+HLL method with a Yin-Yang overset grid and an AMR grid[J]. Astrophys. J., 2011, 734(1):50 [12] YANG Liping, FENG Xueshang, XIANG Changqing, et al. Simulation of the unusual solar minimum with 3D SIP-CESE MHD model by comparison with multi-satellite observations[J]. Sol. Phys., 2011, 271(1-2):91-110 [13] FENG Xueshang, YANG Liping, XIANG Changqing, et al. Validation of the 3D AMR SIP-CESE solar wind model for four carrington rotations[J]. Sol. Phys., 2012, 279:207-229 [14] ZHOU Yufen, FENG Xueshang. MHD numerical study of the latitudinal deflection of coronal mass ejection[J]. J. Geophys. Res.:Space Phys., 118:6007-6018 [15] ZHAO Xinhua, FENG Xueshang, ZHOU Yufen. Using a 3-D MHD simulation to interpret propagation and evolution of a coronal mass ejection observed by multiple spacecraft:The 3 April 2010 event[J]. J. Geophys. Res.:Space Phys., 119:9321-9333 [16] BRACKBILL J U, BARNES D C. The effect of nonzero product of magnetic gradient and B on the numerical solution of the magnetohydrodynamic equations[J]. J. Comp. Phys., 1980, 35(7254):165 [17] DELLAR P J. A note on magnetic monopoles and the one-dimensional mhd Riemann problem[J]. J. Comp. Phys., 2001, 172(1):392-398 [18] EVANS C R, HAWLEY J F. Simulation of general relativistic magnetohydrodynamic flows:A constrained transport method, Astrophys[J]. Genomics, 1988, 2(1):14-24 [19] ZIEGLER U. A central-constrained transport scheme for ideal magnetohydrodynamics[J]. J. Comp. Phys., 2004, 196(2):393-416 [20] BALSARA D S. Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics[J]. J. Comp. Phys., 2008, 228(14):5040-5056 [21] JIANG G S, WU C C. A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics[J]. J. Comput. Phys., 1999, 150(2):561-594 [22] RAMSHAW J D. A method for enforcing the solenoidal condition on magnetic field in numerical calculations[J]. J. Comp. Phys., 1983, 52(3):592-596 [23] POWELL K, ROE P, MYONG R, et al. An upwind scheme for magnetohydrodynamics[C]//12th Computational Fluid Dynamics Conference, San Diego:American Institute of Aeronautics and Astronautics, 1995:1704 [24] POWELL K G, ROE P L, LINDE T J, et al. A solution-adaptive upwind scheme for ideal magnetohydrodynamics[J]. J. Comp. Phys., 1999, 154(2):284-309 [25] DEDNER A, KEMM F, KRONER D, et al. Hyperbolic divergence cleaning for the MHD equations[J]. J. Comp. Phys., 2002, 175(2):645-673 [26] MIGNONE A, TZEFERACOS P. A second-order unsplit Godunov scheme for cell-centered MHD:The CTU-GLM scheme[J]. J. Comp. Phys., 2010, 229(6):2117-2138 [27] MIGNONE A, TZEFERACOS P, BODO G, et al. High-order conservative finite difference GLM-MHD schemes for cell-centered MHD[J]. J. Comp. Phys., 2010, 229(17):5896-5920 [28] YALIM M S, ABEELE D V, LANI A, et al. A finite volume implicit time integration method for solving the equations of ideal magnetohydrodynamics for the hyperbolic divergence cleaning approach[J]. J. Comp. Phys., 2011, 230(15):6136-6154 [29] ABBO L, OFMAN L, ANTIOCHOS S K, et al. Slow solar wind:Observations and modeling[J]. Space Sci. Rev., 2016, 201(1-4):55-108 [30] ARGE C N, PIZZO V J. Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates[J]. J. Geophys. Res.:Space Phys., 2000, 105(A5):10465-10479 [31] FENG Xueshang, YANG Liping, XIANG Changqing, et al. Three-dimensional solar WIND modeling from the Sun to Earth by a SIP-CESE MHD model with a six-component Grid[J]. Astrophys. J., 2010, 723(1):300 [32] GOMBOSI T I, DE ZEEUW D L, POWELL K G, et al. Adaptive mesh refinement for global magnetohydrodynamic simulation[J]. Lect. Not. Phys., 2003, 615:247-274 [33] TANAKA T. Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulation of inhomogeneous systems including strong background potential fields[J]. J. Comp. Phys., 1994, 111(2):381-389 [34] JANHUNEN P, PALMROTH M, LAITINEN T, et al. The GUMICS-4 global MHD magnetosphere-ionosphere coupling simulation[J]. J. Atmos. Sol.:Terr. Phys., 2012, 80(3):48-59 [35] TÓTH G, BART V D H, SOKOLOV I V, et al. Adaptive numerical algorithms in space weather modeling[J]. J. Comp. Phys., 2012, 231(3):870-903 [36] BART V D H, MANCHESTER IV W B, FRAZIN R A, et al. A data-driven, two-temperature solar wind model with Alfven waves[J]. Astrophys. J., 2010, 725(1):1373 [37] CHEN Yao. Multi-fluid Solar Wind Models[D]. Hefei:University of Science and Technology of China, 2004(陈耀. 多成分太阳风模型[D]. 合肥:中国科学技术大学, 2004) [38] ENDEVE E, LEER E, HOLZER T E. Two-dimensional magnetohydrodynamic models of the solar corona:mass loss from the streamer belt[J]. Astrophys. J., 2003, 589(2):1040 [39] TOMA G D. Evolution of coronal holes and implications for high-speed solar wind during the minimum between cycles 23 and 24[J]. Sol. Phys., 2011, 274(1/2):195-217 [40] LEER E, HOLZER T E. Energy addition in the solar wind[J]. J. Geophys. Res. Space, 1980, 85(A9):4681-4688 -
-
计量
- 文章访问数: 1122
- HTML全文浏览量: 135
- PDF下载量: 87
-
被引次数:
0(来源:Crossref)
0(来源:其他)