留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

在轨发动机射流的电离层效应

赵海生 许正文 徐朝辉 袁仕耿 刘胜利 吴健 徐彬 薛昆

赵海生, 许正文, 徐朝辉, 袁仕耿, 刘胜利, 吴健, 徐彬, 薛昆. 在轨发动机射流的电离层效应[J]. 空间科学学报, 2019, 39(6): 746-756. doi: 10.11728/cjss2019.06.746
引用本文: 赵海生, 许正文, 徐朝辉, 袁仕耿, 刘胜利, 吴健, 徐彬, 薛昆. 在轨发动机射流的电离层效应[J]. 空间科学学报, 2019, 39(6): 746-756. doi: 10.11728/cjss2019.06.746
ZHAO Haisheng, XU Zhengwen, XU Zhaohui, YUAN Shigeng, LIU Shengli, WU Jian, XU Bin, XUE Kun. Ionospheric Effects Caused by In-orbit Engine Jet[J]. Chinese Journal of Space Science, 2019, 39(6): 746-756. doi: 10.11728/cjss2019.06.746
Citation: ZHAO Haisheng, XU Zhengwen, XU Zhaohui, YUAN Shigeng, LIU Shengli, WU Jian, XU Bin, XUE Kun. Ionospheric Effects Caused by In-orbit Engine Jet[J]. Chinese Journal of Space Science, 2019, 39(6): 746-756. doi: 10.11728/cjss2019.06.746

在轨发动机射流的电离层效应

doi: 10.11728/cjss2019.06.746 cstr: 32142.14.cjss2019.06.746
基金项目: 

国家自然科学基金项目资助(61871352,61601419)

详细信息
    作者简介:
    • 赵海生,E-mail:zhaohaisheng213@163.com
  • 中图分类号: P352

Ionospheric Effects Caused by In-orbit Engine Jet

  • 摘要: 卫星等航天器在轨运行期间,通过喷气实现姿态控制、轨道调整等特定需求.喷气射流与电离层相互作用,能够引起电离层环境改变,对星载设备产生重要影响.通过研究航天器在轨发动机喷气射流在电离层中的动力学及化学反应过程,建立射流的电离层效应物理模型,模拟了不同射流量及高度条件下喷气射流的运动过程、密度分布及电离层扰动效应.仿真结果表明,相同高度下,随着射流量增加,电离层扰动效应逐渐增强;相同射流量条件下,随着高度增加,电离层扰动效应逐渐减弱,扰动区域逐渐扩大.

     

  • [1] XIONG Nianlu, TANG Cunchen, LI Xingjian. An Introduction to Ionospheric Physics[M]. Wuhan:Wuhan University Press, 1997
    [2] WANG Siyu, WANG Jinsong, YU Tao, et al. Preliminary analysis of ionospheric scintillations over Guangzhou region of China[J]. Chin. J. Space Sci., 2010, 30(2):141-147(王斯宇, 王劲松, 余涛, 等. 中国广州地区电离层闪烁观测结果的初步统计分析[J]. 空间科学学报, 2010, 30(2):141-147)
    [3] Space Studies Board. Severe Space Weather Event-Understanding Societal and Economic Impacts:A Workshop Report[R]. Washington DC:National Academies Press, 2008
    [4] KEITH A R, PAUM A L, KAREN A F, et al. Observations of internal charging currents in medium earth orbit[J]. IEEE Trans. Plasma Sci., 2008, 36(5).DOI:10. 1109/TPS.2008.2001945
    [5] ZHANG Yulin, CHEN Xiaoqian, YAN Ye. Space Environment and Its Impact on Spacecraft[M]. Beijing:China Aerospace Press, 2011
    [6] CHOI H S. Analysis of GEO spacecraft anomalies:Space weather relationships[J]. Space Weather, 2011, 9(1):1
    [7] BAKER D N. The occurrence of operational anomalies in spacecraft and their relationship to space weather[J]. IEEE Trans. Plasma Sci., 2000, 28(6):2007
    [8] TIAN Tian, JIAO Weixin, CHEN Xu, et al. Study on the effects of protons to spacecraft internal charging with Monte Carlo method[J]. Chin. J. Space Sci., 2010, 31(1):93-99(田天, 焦维新, 陈旭, 等. 用蒙特卡罗方法研究质子在航天器内部充电中的作用[J]. 空间科学学报, 2011, 31(1):93-99)
    [9] FREDERICKSON A R, DENNISON J R. Measurement of conductivity and charge storage in insulators related to spacecraft charging[J]. IEEE Trans. Nucl. Sci., 2003, 50(6):2284-2291
    [10] LAI S T, The mott transition as a cause of anomalies on spacecraft[J]. IEEE Trans. Plasma Sci., 2000, 28(6):2097-2102
    [11] GUBBY R, EVANS J. Space environment effects and satellite design[J]. Atmos. Terr. Phys., 2002, 64:1723-1733
    [12] BOOKER H G. A local reduction of F-region ionization due to missile transit[J]. J. Geophys. Res., 1961, 66(4):1073-1079
    [13] MENDILLO M, HAWKINS G S, KLOBUCHAR J A. A large-scale hole in ionosphere caused by the launch of Skylab[J]. Science, 1975, 187:343
    [14] MENDILLO M, HAWKINS G S, KLOBUCHAR J A. A sudden vanishing of the ionosphere due to the launch of Skylab[J]. J. Geophys. Res., 1975, 80:2217
    [15] ZINN J, SUTHERLAND C D, STONE S N, et al. Ionospheric effects of rocket exhaust products-Heao-C, Skylab[J]. J. Atmos. Terr. Phys., 1982, 44:1143-1171
    [16] MENDILLO M, FORBES J M. Artificially created holes in the ionosphere[J]. J. Geophys. Res., 1978, 83:151-162
    [17] MENDILLO M, FORBES J M. Theory and observation of a dynamically evolving negative ion plasma[J]. J. Geophys. Res., 1982, 87:8273
    [18] BERNHARDT P A. The Response of the Ionosphere to the Injection of Chemically Reactive Vapors[R]//Stanford California:Stanford Electronics Laboratories, Stanford University, 1976
    [19] STANYUKOVICH D P. Unsteady Motion of Continuous Media[M]. New York:Pergamon Press, 1960
    [20] HU Yaogai, ZHAO Zhengyu, ZHANG Yuannong. Numerical simulation on the early dynamics of barium clouds released in the ionosphere[J]. Acta Phys. Sin., 2012, 61(8):089401
    [21] ZHAO Haisheng, XU Zhengwen, WU Zhensen, et al. A three-dimensional refined modeling for the effects of SF6 release in ionosphere[J]. Acta Phys. Sin., 2016, 65(20):209401
    [22] SCALES W A, BERNHARDT P A. Simulation of high-speed (orbital) releases of electron attachment materials in the ionosphere[J]. J. Geophys. Res., 1991, 96:13815-13828
    [23] BERNHARDT P A. Plasm, fluid instabilities in ionospheric hole[J]. J. Geophys. Res., 1982, 87:7539-7549
    [24] SHUMAN N S, HUNTON D E, VIGGIANO A A. Ambient and modified atmospheric ion chemistry:from top to bottom[J]. J. Chem. Rev., 2015, 115(10).DOI:10. 1021/cr5003479
    [25] ZHAO Haisheng, FENG Jie, XU Zhengwen, et al. A temporal three-dimensional simulation of samarium release in the ionosphere[J]. J. Geophys. Res. Space Phys., 2016, 121. DOI: 10.1002/2016JA022425
  • 加载中
计量
  • 文章访问数:  1046
  • HTML全文浏览量:  172
  • PDF下载量:  70
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2018-10-26
  • 修回日期:  2019-03-28
  • 刊出日期:  2019-11-15

目录

    /

    返回文章
    返回