留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Seasonal Variations of Mesospheric Densities Observed by Rayleigh Lidar at Golmud, Qinghai

DAI Yaru PAN Weilin QIAO Shuai HU Xiong YAN Zhaoai BAN Chao

DAI Yaru, PAN Weilin, QIAO Shuai, HU Xiong, YAN Zhaoai, BAN Chao. Seasonal Variations of Mesospheric Densities Observed by Rayleigh Lidar at Golmud, Qinghai[J]. 空间科学学报, 2020, 40(2): 207-214. doi: 10.11728/cjss2020.02.207
引用本文: DAI Yaru, PAN Weilin, QIAO Shuai, HU Xiong, YAN Zhaoai, BAN Chao. Seasonal Variations of Mesospheric Densities Observed by Rayleigh Lidar at Golmud, Qinghai[J]. 空间科学学报, 2020, 40(2): 207-214. doi: 10.11728/cjss2020.02.207
DAI Yaru, PAN Weilin, QIAO Shuai, HU Xiong, YAN Zhaoai, BAN Chao. Seasonal Variations of Mesospheric Densities Observed by Rayleigh Lidar at Golmud, Qinghai[J]. Chinese Journal of Space Science, 2020, 40(2): 207-214. doi: 10.11728/cjss2020.02.207
Citation: DAI Yaru, PAN Weilin, QIAO Shuai, HU Xiong, YAN Zhaoai, BAN Chao. Seasonal Variations of Mesospheric Densities Observed by Rayleigh Lidar at Golmud, Qinghai[J]. Chinese Journal of Space Science, 2020, 40(2): 207-214. doi: 10.11728/cjss2020.02.207

Seasonal Variations of Mesospheric Densities Observed by Rayleigh Lidar at Golmud, Qinghai

doi: 10.11728/cjss2020.02.207
基金项目: 

Supported by the National Key R and D Program of China (2018YFC1407301, 2016YFC1400301) and the National Natural Science Foundation of China (41127901)

详细信息
    作者简介:

    DAI Yaru,E-mail:panweilin@mail.iap.ac.cn

  • 中图分类号: P351

Seasonal Variations of Mesospheric Densities Observed by Rayleigh Lidar at Golmud, Qinghai

Funds: 

Supported by the National Key R and D Program of China (2018YFC1407301, 2016YFC1400301) and the National Natural Science Foundation of China (41127901)

More Information
    Author Bio:

    DAI Yaru,E-mail:panweilin@mail.iap.ac.cn

  • 摘要: From Aug. 2013 to Oct. 2015, a Rayleigh lidar has been used to study the middle atmosphere at Golmud (36.25°N, 94.54°E), Qinghai, located in the northeastern part of the Tibetan Plateau. Mesospheric density profiles from 50 to 90 km were retrieved based on 205 nights of lidar observation, with a total of 1616 hours of operation. We compared our lidar density measurements with SABER observations onboard TIMED satellite and MSIS-00 model data. The results showed that the annual mean density measured by lidar agreed well with SABER data, but both were lower than that of MSIS-00. All datasets exhibited dominant annual oscillation in the mesosphere. From 63 to 85 km, the annual amplitude of lidar density is larger than those of SABER and MSIS-00. PDD (Percentage of Density Difference) was calculated to investigate the mesospheric density climatology. The largest density variations of lidar, MSIS-00, and SABER occurred at around 72 km. Both lidar and SABER PDD reached their maximum in May, about one month earlier than the MSIS-00; while the minimum PDD appeared in late December for all datasets.

     

  • [1] LABITZKE K. Temperature changes in the mesosphere and stratosphere connected with circulation changes in winter[J]. J. Atmos. Sci., 1972, 29(4):756-766
    [2] ROBLE R G, DICKINSON R E. How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere[J]. Geophys. Res. Lett., 1989, 16:1441-1444
    [3] HOLTON J R. The influence of gravity wave breaking on the general circulation of the middle atmosphere[J]. J. Atmos. Sci., 1983, 40(10):2497-2507
    [4] LIU H L, ROBLE R G. A study of a self-generated stratospheric sudden warming and its mesospheric lower thermospheric impacts using the coupled TIME-GCM/CCM3[J]. J. Geophys. Res., 2002, 107(D23):4695
    [5] YUAN T, THURAIRAJAH B, SHE C Y, et al. Wind and temperature response of midlatitude mesopause region to the 2009 Sudden Stratospheric Warming[J]. J. Geophys. Res., 2012, 117:D09114
    [6] SOX L, WICKWAR V, FISH C, et al. Temperature deviations in the midlatitude mesosphere during stratospheric warmings as measured with Rayleigh-scatter lidar[C]//The 27th International Laser Radar Conference. New York:the International Laser Radar Conference, 2015:1441-1444
    [7] HEDIN A E, SALAH J E, EVANS J V, et al. A global thermospheric model based on mass spectrometer and incoherent scatter data, MSIS 1. N2 density and temperature[J]. J. Geophys. Res., 1977, 82:2139-2147
    [8] PICONE J M, HEDIN A E, DROB D P, et al. NRLMSISE-00 empirical model of the atmosphere:statistical comparisons and scientific issues[J]. J. Geophys. Res., 2002, 107(A12):1468
    [9] LING C, CHEN Z. Monthly averaged atmospheric conditions in the transition flow region of China based on the NRLMSISE-00 model[J]. Spacecraft Environ. Eng., 2015, 32(3):236-242
    [10] MCLRESS C, SHEPHERD G G, SOLHEIM B H, et al. Combined mesosphere/thermosphere winds using WINDII and HRDI data from the Upper Atmosphere Research Satellite[J]. J. Geophys. Res., 1996, 1011(D6):10441-10454
    [11] SHE C Y, CHEN S, HU Z, et al. Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Fort Collins, Co (41°N, 105°W)[J]. Geophys. Res. Lett., 2000, 27(20):3289-3292
    [12] SIVAKUMAR V, PRASANTH P V, KISHORE P, et al. Rayleigh LIDAR and satellite (HALOE, SABER, CHAMP and COSMIC) measurements of stratospheremesosphere temperature over a southern sub-tropical site, Reunion (20.8°S; 55.5°E):climatology and comparison study[J]. Ann. Geophys., 2011, 29(4):649-662
    [13] BRUINSMA S, FORBES J M, NEREM R S, et al. Thermosphere density response to the 20-21 November 2003 solar and geomagnetic storm from CHAMP and GRACE accelerometer data[J]. J. Geophys. Res., 2006, 111:A06303
    [14] EMMERT J T, PICONE J M, MEIER R R. Thermospheric global average density trends, 1967-2007, derived from orbits of 5000 near-Earth objects[J]. Geophys. Res. Lett., 2008, 35:L05101
    [15] SOLOMON S C, QIAN L, DIDKOVSKY L V, et al. Causes of low thermospheric density during the 2007-2009 solar minimum[J]. J. Geophys. Res., 2011, 116:A00H07
    [16] QIAN L, SOLOMON S C. Thermospheric density:an overview of temporal and spatial variations[J]. Space Sci. Rev., 2012, 168(1/2/3/4):1-27
    [17] JONES L M, PETERSON J W, SCHAEFER E J, et al. Upper-air density and temperature:some variations and an abrupt warming in the mesosphere[J]. J. Geophys. Res., 1959, 64(12):2331-2340
    [18] THIELE O W. Observed diurnal oscillations of pressure and density in the upper stratosphere and lower mesosphere[J]. J. Atmos. Sci., 1966, 23(4):424-430
    [19] YI W, XUE X, REID I M, et al. Climatology of the mesopause relative density using a global distribution of meteor radars[J]. Atmos. Chem. Phys., 2019, 19:7567-7581
    [20] RUSSELL J M, MLYNCZAK M G, GORDLEY L L. Overview of the Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) experiment for the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) mission[J]. Opt. Photonics, 1994. DOI: 10.1117/12.187579
    [21] FECHINE J, WRASSE C M, TAKAHASHI H, et al. Lower-mesospheric inversion layers over Brazilian equatorial region using TIMED/SABER temperature profiles[J]. Adv. Space Res., 2007, 41(9):1447-1453
    [22] XIAO C, HU X, YANG J, et al. Characteristics of atmospheric density at 38°N in near space and its modeling technique[J]. J. Beijing Univ. Aeronaut. Astronaut., 2017, 43(9):1757-1765
    [23] HAUCHECORNE A, CHANIN M L. Density and temperature profiles obtained by lidar between 35 km and 70 km[J]. Geophys. Res. Lett., 1980, 7:565-568
    [24] SHIBATA T, KOBUCHI M, MAEDA M. Measurements of density and temperature profiles in the middle atmosphere with a XeF lidar[J]. Appl. Optics, 1986, 25(5):685-688
    [25] DAO P, KLEMETTI W, SIPLER D, et al. Density measurements with combined Raman-Rayleigh lidar[J]. Proc. SPIE Int. Soc. Opt. Eng., 1988, 1062:138-143
    [26] WU Y, HU H, HU S, et al. Atmospheric density and temperature measurement with lidar in the middle and upper stratosphere[J]. Chin. J. Quant. Electron., 2000, 17(5):426-431
    [27] BARTON D L, WICKWAR V B, HERRON J P, et al. Variations in mesospheric neutral densities from rayleigh lidar observations at Utah State University[C]//The 27th International Laser Radar Conference. New York:the International Laser Radar Conference, 2015
    [28] QIAO S, PAN W, ZHU K, et al. Initial results of lidar measured middle atmosphere temperatures over Tibetan Plateau[J]. Atmos. Oceanic Sci. Lett., 2014, 7:213-217
    [29] QIAO S, PAN W, BAN C, et al. Mesospheric density measured by Rayleigh lidar over Golmud[J]. Infrared Laser Eng., 2018, 47(S1):S106005-1-6
    [30] LOMB N R. Least-squares frequency analysis of unequally spaced data[J]. Astrophys. Space Sci., 1976, 39, 447-462
    [31] PAN W, GARDNER C S. Seasonal variations of the atmospheric temperature structure at South Pole[J]. J. Geophys. Res., 2003, 108(D18):4564
  • 加载中
计量
  • 文章访问数:  764
  • HTML全文浏览量:  80
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-25
  • 修回日期:  2019-12-25
  • 刊出日期:  2020-03-15

目录

    /

    返回文章
    返回