留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高纬度地区GPT2w模型的适应性分析

姚翔 陈明剑 王建光 陈锐

姚翔, 陈明剑, 王建光, 陈锐. 高纬度地区GPT2w模型的适应性分析[J]. 空间科学学报, 2020, 40(2): 242-249. doi: 10.11728/cjss2020.02.242
引用本文: 姚翔, 陈明剑, 王建光, 陈锐. 高纬度地区GPT2w模型的适应性分析[J]. 空间科学学报, 2020, 40(2): 242-249. doi: 10.11728/cjss2020.02.242
YAO Xiang, CHEN Mingjian, WANG Jianguang, CHEN Rui. Adaptability Analysis of GPT2w Model in High Latitudes[J]. Chinese Journal of Space Science, 2020, 40(2): 242-249. doi: 10.11728/cjss2020.02.242
Citation: YAO Xiang, CHEN Mingjian, WANG Jianguang, CHEN Rui. Adaptability Analysis of GPT2w Model in High Latitudes[J]. Chinese Journal of Space Science, 2020, 40(2): 242-249. doi: 10.11728/cjss2020.02.242

高纬度地区GPT2w模型的适应性分析

doi: 10.11728/cjss2020.02.242 cstr: 32142.14.cjss2020.02.242
详细信息
    作者简介:
    • 姚翔,E-mail:yaoxiang30303@126.com
  • 中图分类号: P351;P228.4

Adaptability Analysis of GPT2w Model in High Latitudes

  • 摘要: GPT2w模型是现有精度最高的天顶对流层模型,但是应用在高纬度地区时存在较大误差.为更好地保障卫星导航定位系统在高纬度地区的高精度应用,评定了GPT2w模型在高纬度地区的精度,获取天顶对流层湿延迟、干延迟和总延迟,探讨了GPT2w模型改正对精密单点定位的影响.试验结果表明: GPT2w模型在高纬度地区的精度为厘米级,优于其在中低纬度地区的精度;南北极地区天顶对流层呈现明显季节变化特征和区域一致性特征,夏季天顶对流层总延迟高于冬季,北极地区天顶对流层湿延迟明显高于南极地区,北极地区天顶对流层随季节的变化幅度大于南极地区.PPP试验结果表明,GPT2w模型能够有效改善定位精度,适应高纬度地区的高精度定位需求.

     

  • [1] LI Zhenhang, ZHANG Xiaohong. New Techniques and Precise Data Processing Methods of Satellite Navigation and Positioning[M]. Wuhan:Wuhan University Press, 2009(李征航, 张小红. 卫星导航定位新技术及高精度数据处理方法[M]. 武汉:武汉大学出版社, 2009)
    [2] LI Wei, YUAN Yunbin, OU Jikun, et al. A new global zenith tropospheric delay model IGGtrop for GNSS applications[J]. Chin. Sci. Bull., 2012, 57(17):2132-2139
    [3] LI Wei, YUAN Yunbin, OU Jikun, et al. New versions of the BDS/GNSS zenith tropospheric delay model IGGtrop[J]. J. Geodesy, 2015, 89(1):73-80
    [4] LI Wei,YUAN Yunbin, OU Jikun, et al. IGGtrop_SH and IGGtrop_rH:two improved empirical tropospheric delay models based on vertical reduction functions[J]. IEEE Trans. Geosci. Remote Sens., 2018, 56(9):1-13
    [5] YAO Yibin, ZHANG Bao, YAN Feng, et al. Two new sophisticated models for tropospheric delay corrections[J]. Chin. J. Geophys., 2015, 58(5):1492-1501(姚宜斌, 张豹, 严凤, 等. 两种精化的对流层延迟改正模型[J]. 地球物理学报, 2015, 58(5):1492-1501)
    [6] LEANDRO R F, SANTOS M C, LANGLEY R B. UNB neutral atmosphere models:development and performance. Proceedings of ION NTM 2006[C]//The 2006 National Technical Meeting. Monterey:the Institute of Navigation, 2006:564-573
    [7] LEANDRO R F, LANGLEY R B, SANTOS M C. UNB3m_pack:a neutral atmosphere delay package for radiometric space techniques[J]. GPS Solut., 2008, 12(1):65-70
    [8] PENNA N, DODSON A, CHEN W. Assessment of EGNOS tropospheric correction model[J]. J. Navig., 2001, 54(1):37-55
    [9] KOUBA J. Testing of Global Pressure/Temperature (GPT) model and Global Mapping Function (GMF) in GPS analyses[J]. J. Geodesy, 2009, 83(3/4):199-208
    [10] LAGLER K, SCHINDELEGGER M, BÖHM J, et al. GPT2:empirical slant delay model for radio space geodetic techniques[J]. Geophys. Res. Lett., 2013, 40(6):1069-1073
    [11] ZHANG H, LI Wei, YUAN Yunbin, et al. Assessment of three tropospheric delay models (IGGtrop, EGNOS and UNB3m) based on precise point positioning in the Chinese region[J]. Sensors, 2016, 16(1):122
    [12] YAO Yibin, HE Changyong, ZHANG Bao, et al. A new global zenith tropospheric model GZTD[J]. Chin. J. Geophys., 2013, 56(7):2218-2227(姚宜斌, 何畅勇, 张豹, 等. 一种新的全球对流层天顶延迟模型GZTD[J]. 地球物理学报, 2013, 56(7):2218-2227)
    [13] CHEN W, GAO C, PAN S. Assessment of GPT2 empirical troposphere model and application analysis in precise point positioning[J]. Lect. Notes Elect. Eng., 2014, 304(2):451-463
    [14] YAO Yibin, CAO Na, XU Chaoling, et al. Accuracy assessment and analysis for GPT2[J]. Acta Geodaet. Cartograph. Sin., 2015, 44(7):726-733(姚宜斌, 曹娜, 许超钤, 等. GPT2模型的精度检验与分析[J]. 测绘学报, 2015, 44(7):726-733)
    [15] JOHANNES Böhm, GREGOR Möller, SCHINDELEGGER M, et al. Development of an improved empirical model for slant delays in the troposphere (GPT2w)[J]. GPS Solut., 2015, 19(3):433-441
    [16] HUA Zhonghao, LIU Lintao, LIANG Xinghui. An assessment of GPT2w model and fusion of a troposphere model with in situ data[J]. Geomat. Inf. Sci. Wuhan Univ, 2017, 42(10):1468-1473(滑中豪, 柳林涛, 梁星辉. GPT2w模型检验以及对流层模型的参数互融[J]. 武汉大学学报:信息科学版, 2017, 42(10):1468-1473)
    [17] KONG Jian, YAO Yibin, WANG Zeming, et al. The accuracy analysis of GPT2w at antarctic area[J]. Acta Geodaet. Cartograph. Sin., 2018, 10:1001-1595(孔健, 姚宜斌, 王泽民, 等. GPT2w模型在南极地区精度分析[J]. 测绘学报, 2018, 10:1001-1595)
    [18] SAASTAMOINEN J H. Atmospheric correction for the troposphere and the stratosphere in radio ranging satellites[J]. Use Artif. Satell. Geod., 1972, 15(6):247-251
    [19] ASKNE J, NORDIUS H. Estimation of tropospheric delay for microwaves from surface weather data[J]. Radio Sci., 2016, 22(3):379-386
  • 加载中
计量
  • 文章访问数:  1630
  • HTML全文浏览量:  260
  • PDF下载量:  87
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2018-12-07
  • 修回日期:  2019-07-23
  • 刊出日期:  2020-03-15

目录

    /

    返回文章
    返回