Simulation of Interplanetary Solar Wind with Three-dimensional MHD Model Driven by Multiple Observations
-
摘要: 三维磁流体力学(MHD)数值模拟是行星际太阳风研究的重要手段.本文发展了一种由多种观测数据驱动的三维行星际太阳风MHD数值模型.模型的计算区域为0.1AU到1AU附近,使用Lax-Friedrich差分格式在六片网格系统中进行数值求解.边界条件中磁场使用GONG台站观测的光球磁图外推获得,密度通过LASCO观测的白光偏振亮度反演得到,速度根据以上两种观测数据并利用一种基于人工神经网络技术(ANN)的方法得到,温度通过自洽方法根据磁场和密度导出.利用该模型模拟了第2062卡灵顿周(CR2062)时期的行星际太阳风,模拟结果显示出丰富的观测特征,并与OMNI以及Ulysses的实际观测值符合得较好.该模型可用于提供接近真实的行星际太阳风,有助于提高空间天气预报的精度.Abstract: Three-dimensional Magnetohydrodynamics (MHD) modeling is a key method for studying the interplanetary solar wind. This paper develops a new solar wind MHD model driven by multiple observations. The computation region of this model is from 0.1 Astronomical Unit (AU) to 1 AU. The model solves the ideal MHD equations in a six-component grid system by using the Total Variation Diminution (TVD) Lax-Friedrich scheme. In the new model, the physical parameters at the inner boundary are determined as following:the magnetic field is derived using the magnetogram synoptic map from GONG; the electron density is derived from the Polarized Brightness (PB) observations from LASCO; the velocity is deduced using an Artificial Neural Network (ANN) tactic with both the magnetogram and PB observations, and the temperature is derived from the magnetic field and electron density by a self-consistent method. We use this model to simulate the interplanetary solar wind during CR2062. The results show various observational characteristics, and are in good agreement with the OMNI and Ulysses observations. Thus, this model can be used to provide more realistic interplanetary solar wind and will be helpful for the research on space weather prediction.
-
Key words:
- MHD simulation /
- Interplanetary solar wind /
- Observations driven
-
[1] WANG C, GUO X C, PENG Z, et al. Magnetohydrodynamics (MHD) numerical simulations on the interaction of the solar wind with the magnetosphere:a review[J]. Sci. China, 2013, 56(7):1141-1157 [2] FENG Xueshang, XIANG Changqing, ZHONG Dingkun. Numerical study of interplanetary solar storms[J]. Sci. Sin. Terr., 2013, 43(6):912-933(冯学尚, 向长青, 钟鼎坤. 行星际太阳风暴的数值模拟研究[J]. 地球科学, 2013, 43(6):912-933) [3] WANG Y, SHEN C, WANG S, et al. Deflection of coronal mass ejection in the interplanetary medium[J]. Sol. Phys., 2004, 222(2):329-343 [4] ZHAO X, DRYER M. Current status of CME/shock arrival time prediction[J]. Space Weather, 2014, 12(7):448-469 [5] SHEN F, SHEN C, WANG Y, et al. Could the collision of CMEs in the heliosphere be super-elastic? Validation through three-dimensional simulations[J]. Geophys. Res. Lett., 2013, 40(8):1457-1461 [6] SHEN F, SHEN C, ZHANG J, et al. Evolution of the 12 July 2012 CME from the Sun to the Earth:data-constrained three-dimensional MHD simulations[J]. J. Geophys. Res.:Space Phys., 2014, 119(9):7128-7141 [7] SHEN F, YANG Z, ZHANG J, et al. Three-dimensional MHD simulation of solar wind using a new boundary treatment:comparison with in-situ data at Earth[J]. Astrophys. J., 2018, 866(1):18 [8] WEI W, SHEN F, YANG Z, et al. Modeling solar energetic particle transport in 3D background solar wind:influences of the compression regions[J]. J. Atmosph. Sol.:Terr. Phys., 2019, 182:155-164 [9] LEE C O, LUHMANN J G, ODSTRCIL D, et al. The solar wind at 1AU during the declining phase of solar cycle 23:comparison of 3D numerical model results with observations[J]. Sol. Phys., 2009, 254(1):155-183 [10] TÓTH G, SOKOLOV I V, GOMBOSI T I, et al. Space weather modeling framework:a new tool for the space science community[J]. J. Geophys. Res.:Space Phys., 2005, 110(A12).DOI: org/10.1029/2005JA011126 [11] KISSMANN R, KLEIMANN J, KREBL B L, et al. The CRONOS code for astrophysical MHD[J]. Astrophys. J. Suppl., 2018, 236(2):53 [12] FENG X, WU S T, WEI F, et al. A class of TVD type combined numerical scheme for MHD equations with a survey about numerical methods in solar wind simulations[J]. Space Sci. Rev., 2003, 107(1/2):43-53 [13] SHEN F, FENG X, SONG W. An asynchronous and parallel time-marching method:application to three-dimensional MHD simulation of solar wind[J]. Sci. China Ser. E:Technol. Sci., 2009, 52(10):2895-2902 [14] OWENS M J, SPENCE H E, MCGREGOR S, et al. Metrics for solar wind prediction models:comparison of empirical, hybrid, and physics-based schemes with 8 years of L1 observations[J]. Space Weather, 2008, (8).DOI: 10.1029/2007SW000380 [15] ARGE C N, ODSTRCIL D, PIZZO V J, et al. Improved method for specifying solar wind speed near the sun[J]. Am. Inst. Phys., 2003, 679(1):190-193 [16] ARGE C N, PIZZO V J. Improvement in the prediction of solar wind conditions using near-real time solar magnetic field update[J]. J. Geophys. Res.:Space Phys., 2000, 105(A5):10465-10479 [17] WANG Y M, SHEELEY JR N. Solar wind speed and coronal flux-tube expansion[J]. Astrophys. J., 1990, 355:726-732 [18] ODSTRCIL D. Modeling 3-D solar wind structure[J]. Adv. Space Res., 2003, 32(4):497-506 [19] OWENS M, SPENCE H E, MCGREGOR S, et al. Metrics for solar wind prediction models:comparison of empirical, hybrid, and physics-based schemes with 8 years of L1 observations[J]. Space Weather, 2008, 6(8).DOI: org/10.1029/2007SW000380 [20] PARKER E N. Dynamics of the interplanetary gas and magnetic fields[J]. Astrophys. J., 1958, 128(3):664-676 [21] EVERSON R W, DIKPATI M. An observationally constrained 3D potential-field source-surface model for the evolution of longitude-dependent coronal structures[J]. Astrophys. J., 2017, 850(2):152 [22] JONES S I, DAVILA J M, URITSKY V. Optimizing global coronal magnetic field models using image-based constraints[J]. Astrophys. J., 2016, 820(2).DOI: 10.1002/2013JA019464 [23] YANG Zicai, SHEN Fang, YANG Yi, et al. Three-dimensional MHD simulation of interplanetary solar wind[J]. Chin. J. Geophys., 2018, 61(11):4337-4347(杨子才, 沈芳, 杨易, 等. 行星际背景太阳风的三维MHD数值模拟[J]. 地球物理学报, 2018, 61(11):4337-4347) [24] TÓTH G, ODSTRČIL D. Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems[J]. J. Comput. Phys., 1996, 128(1):82-100 [25] FENG X, YANG L, XIANG C, et al. Three-dimensional solar wind modeling from the Sun to Earth by a SIP-CESE MHD model with a six-component grid[J]. Astrophys. J., 2010, 723(1):300 [26] REMPEL M, SCHUESSLER M, KNOELKER M. Radiative MHD simulation of sunspot structure[J]. Astrophys. J., 2008, 691(1):812 [27] COURANT R, FRIEDRICHS K, LEWY H. On the partial difference equations of mathematical physics[J]. IBM J. Res. Dev., 1967, 11(2):215-234 [28] ALTSCHULER M D, NEWKIRK JR G. Magnetic fields and the structure of the solar corona[J]. Sol. Phys., 1969, 9(1):131-149 [29] SCHATTEN K H, WILCOX J M, NESS N F. A model of interplanetary and coronal magnetic fields[J]. Sol. Phys., 1969, 6(3):442-455 [30] ARGE C N, ODSTRCIL D, PIZZO V J, et al. Improved method for specifying solar wind speed near the Sun[J]. AIP Conf. Proc., 2003, 679(1):190-193 [31] RILEY P, LINKER J, MIKIĆ Z, et al. A comparison between global solar magnetohydrodynamic and potential field source surface model results[J]. Astrophys. J., 2006, 653(2):1510 [32] YANG Y, SHEN F, YANG Z, et al. Prediction of solar wind speed at 1AU using an artificial neural network[J]. Space Weather, 2018, 16(9):1227-1244 [33] HULST VAN DE H. The electron density of the solar corona[J]. Bull. Astron. Inst. Netherlands, 1950, 11:135-150 [34] BILLINGS D E. A Guide to the Solar Corona[M]. New York:Academic Press, 2013 [35] WEI F S, FENG X S, CAI H C, et al. Global distribution of coronal mass outputs and its relation to solar magnetic field structures[J]. J. Geophys. Res.:Space, 2003, 108(A6).DOI: org/10.1029/2002JA009439 [36] SHEN F, FENG X, XIANG C. Improvement to the global distribution of coronal plasma and magnetic field on the source surface using expansion factor fs and angular distance θb[J]. J. Atmos. Sol.:Terr. Phys., 2012, 77:125-131 [37] SHEN F, FENG X, XIANG C, et al. The statistical and numerical study of the global distribution of coronal plasma and magnetic field near 2.5Rs over a 10-year period[J]. J. Atmos. Sol.:Terr. Phys., 2010, 72(13):1008-1018 [38] GARY G A. Plasma beta above a solar active region:rethinking the paradigm[J]. Sol. Phys., 2001, 203(1):71-86 [39] GOSLING J, PIZZO V. Formation and Evolution of Corotating Interaction Regions and Their Three Dimensional Structure[M]. Corotating Interaction Regions:Springer, 1999:21-52 -
-
计量
- 文章访问数: 1259
- HTML全文浏览量: 129
- PDF下载量: 85
-
被引次数:
0(来源:Crossref)
0(来源:其他)