留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多种观测数据驱动的三维行星际太阳风MHD模拟

杨易 沈芳 杨子才

杨易, 沈芳, 杨子才. 多种观测数据驱动的三维行星际太阳风MHD模拟[J]. 空间科学学报, 2020, 40(3): 305-314. doi: 10.11728/cjss2020.03.305
引用本文: 杨易, 沈芳, 杨子才. 多种观测数据驱动的三维行星际太阳风MHD模拟[J]. 空间科学学报, 2020, 40(3): 305-314. doi: 10.11728/cjss2020.03.305
YANG Yi, SHEN Fang, YANG Zicai. Simulation of Interplanetary Solar Wind with Three-dimensional MHD Model Driven by Multiple Observations[J]. Chinese Journal of Space Science, 2020, 40(3): 305-314. doi: 10.11728/cjss2020.03.305
Citation: YANG Yi, SHEN Fang, YANG Zicai. Simulation of Interplanetary Solar Wind with Three-dimensional MHD Model Driven by Multiple Observations[J]. Chinese Journal of Space Science, 2020, 40(3): 305-314. doi: 10.11728/cjss2020.03.305

多种观测数据驱动的三维行星际太阳风MHD模拟

doi: 10.11728/cjss2020.03.305 cstr: 32142.14.cjss2020.03.305
基金项目: 

国家自然科学基金项目(41774184,41874202,41731067),国家重点实验室专项研究基金项目和国家"万人计划"青年拔尖人才项目共同资助

详细信息
    作者简介:
    • 杨易,E-mail:yyang@spaceweather.ac.cn
  • 中图分类号: P353

Simulation of Interplanetary Solar Wind with Three-dimensional MHD Model Driven by Multiple Observations

  • 摘要: 三维磁流体力学(MHD)数值模拟是行星际太阳风研究的重要手段.本文发展了一种由多种观测数据驱动的三维行星际太阳风MHD数值模型.模型的计算区域为0.1AU到1AU附近,使用Lax-Friedrich差分格式在六片网格系统中进行数值求解.边界条件中磁场使用GONG台站观测的光球磁图外推获得,密度通过LASCO观测的白光偏振亮度反演得到,速度根据以上两种观测数据并利用一种基于人工神经网络技术(ANN)的方法得到,温度通过自洽方法根据磁场和密度导出.利用该模型模拟了第2062卡灵顿周(CR2062)时期的行星际太阳风,模拟结果显示出丰富的观测特征,并与OMNI以及Ulysses的实际观测值符合得较好.该模型可用于提供接近真实的行星际太阳风,有助于提高空间天气预报的精度.

     

  • [1] WANG C, GUO X C, PENG Z, et al. Magnetohydrodynamics (MHD) numerical simulations on the interaction of the solar wind with the magnetosphere:a review[J]. Sci. China, 2013, 56(7):1141-1157
    [2] FENG Xueshang, XIANG Changqing, ZHONG Dingkun. Numerical study of interplanetary solar storms[J]. Sci. Sin. Terr., 2013, 43(6):912-933(冯学尚, 向长青, 钟鼎坤. 行星际太阳风暴的数值模拟研究[J]. 地球科学, 2013, 43(6):912-933)
    [3] WANG Y, SHEN C, WANG S, et al. Deflection of coronal mass ejection in the interplanetary medium[J]. Sol. Phys., 2004, 222(2):329-343
    [4] ZHAO X, DRYER M. Current status of CME/shock arrival time prediction[J]. Space Weather, 2014, 12(7):448-469
    [5] SHEN F, SHEN C, WANG Y, et al. Could the collision of CMEs in the heliosphere be super-elastic? Validation through three-dimensional simulations[J]. Geophys. Res. Lett., 2013, 40(8):1457-1461
    [6] SHEN F, SHEN C, ZHANG J, et al. Evolution of the 12 July 2012 CME from the Sun to the Earth:data-constrained three-dimensional MHD simulations[J]. J. Geophys. Res.:Space Phys., 2014, 119(9):7128-7141
    [7] SHEN F, YANG Z, ZHANG J, et al. Three-dimensional MHD simulation of solar wind using a new boundary treatment:comparison with in-situ data at Earth[J]. Astrophys. J., 2018, 866(1):18
    [8] WEI W, SHEN F, YANG Z, et al. Modeling solar energetic particle transport in 3D background solar wind:influences of the compression regions[J]. J. Atmosph. Sol.:Terr. Phys., 2019, 182:155-164
    [9] LEE C O, LUHMANN J G, ODSTRCIL D, et al. The solar wind at 1AU during the declining phase of solar cycle 23:comparison of 3D numerical model results with observations[J]. Sol. Phys., 2009, 254(1):155-183
    [10] TÓTH G, SOKOLOV I V, GOMBOSI T I, et al. Space weather modeling framework:a new tool for the space science community[J]. J. Geophys. Res.:Space Phys., 2005, 110(A12).DOI: org/10.1029/2005JA011126
    [11] KISSMANN R, KLEIMANN J, KREBL B L, et al. The CRONOS code for astrophysical MHD[J]. Astrophys. J. Suppl., 2018, 236(2):53
    [12] FENG X, WU S T, WEI F, et al. A class of TVD type combined numerical scheme for MHD equations with a survey about numerical methods in solar wind simulations[J]. Space Sci. Rev., 2003, 107(1/2):43-53
    [13] SHEN F, FENG X, SONG W. An asynchronous and parallel time-marching method:application to three-dimensional MHD simulation of solar wind[J]. Sci. China Ser. E:Technol. Sci., 2009, 52(10):2895-2902
    [14] OWENS M J, SPENCE H E, MCGREGOR S, et al. Metrics for solar wind prediction models:comparison of empirical, hybrid, and physics-based schemes with 8 years of L1 observations[J]. Space Weather, 2008, (8).DOI: 10.1029/2007SW000380
    [15] ARGE C N, ODSTRCIL D, PIZZO V J, et al. Improved method for specifying solar wind speed near the sun[J]. Am. Inst. Phys., 2003, 679(1):190-193
    [16] ARGE C N, PIZZO V J. Improvement in the prediction of solar wind conditions using near-real time solar magnetic field update[J]. J. Geophys. Res.:Space Phys., 2000, 105(A5):10465-10479
    [17] WANG Y M, SHEELEY JR N. Solar wind speed and coronal flux-tube expansion[J]. Astrophys. J., 1990, 355:726-732
    [18] ODSTRCIL D. Modeling 3-D solar wind structure[J]. Adv. Space Res., 2003, 32(4):497-506
    [19] OWENS M, SPENCE H E, MCGREGOR S, et al. Metrics for solar wind prediction models:comparison of empirical, hybrid, and physics-based schemes with 8 years of L1 observations[J]. Space Weather, 2008, 6(8).DOI: org/10.1029/2007SW000380
    [20] PARKER E N. Dynamics of the interplanetary gas and magnetic fields[J]. Astrophys. J., 1958, 128(3):664-676
    [21] EVERSON R W, DIKPATI M. An observationally constrained 3D potential-field source-surface model for the evolution of longitude-dependent coronal structures[J]. Astrophys. J., 2017, 850(2):152
    [22] JONES S I, DAVILA J M, URITSKY V. Optimizing global coronal magnetic field models using image-based constraints[J]. Astrophys. J., 2016, 820(2).DOI: 10.1002/2013JA019464
    [23] YANG Zicai, SHEN Fang, YANG Yi, et al. Three-dimensional MHD simulation of interplanetary solar wind[J]. Chin. J. Geophys., 2018, 61(11):4337-4347(杨子才, 沈芳, 杨易, 等. 行星际背景太阳风的三维MHD数值模拟[J]. 地球物理学报, 2018, 61(11):4337-4347)
    [24] TÓTH G, ODSTRČIL D. Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems[J]. J. Comput. Phys., 1996, 128(1):82-100
    [25] FENG X, YANG L, XIANG C, et al. Three-dimensional solar wind modeling from the Sun to Earth by a SIP-CESE MHD model with a six-component grid[J]. Astrophys. J., 2010, 723(1):300
    [26] REMPEL M, SCHUESSLER M, KNOELKER M. Radiative MHD simulation of sunspot structure[J]. Astrophys. J., 2008, 691(1):812
    [27] COURANT R, FRIEDRICHS K, LEWY H. On the partial difference equations of mathematical physics[J]. IBM J. Res. Dev., 1967, 11(2):215-234
    [28] ALTSCHULER M D, NEWKIRK JR G. Magnetic fields and the structure of the solar corona[J]. Sol. Phys., 1969, 9(1):131-149
    [29] SCHATTEN K H, WILCOX J M, NESS N F. A model of interplanetary and coronal magnetic fields[J]. Sol. Phys., 1969, 6(3):442-455
    [30] ARGE C N, ODSTRCIL D, PIZZO V J, et al. Improved method for specifying solar wind speed near the Sun[J]. AIP Conf. Proc., 2003, 679(1):190-193
    [31] RILEY P, LINKER J, MIKIĆ Z, et al. A comparison between global solar magnetohydrodynamic and potential field source surface model results[J]. Astrophys. J., 2006, 653(2):1510
    [32] YANG Y, SHEN F, YANG Z, et al. Prediction of solar wind speed at 1AU using an artificial neural network[J]. Space Weather, 2018, 16(9):1227-1244
    [33] HULST VAN DE H. The electron density of the solar corona[J]. Bull. Astron. Inst. Netherlands, 1950, 11:135-150
    [34] BILLINGS D E. A Guide to the Solar Corona[M]. New York:Academic Press, 2013
    [35] WEI F S, FENG X S, CAI H C, et al. Global distribution of coronal mass outputs and its relation to solar magnetic field structures[J]. J. Geophys. Res.:Space, 2003, 108(A6).DOI: org/10.1029/2002JA009439
    [36] SHEN F, FENG X, XIANG C. Improvement to the global distribution of coronal plasma and magnetic field on the source surface using expansion factor fs and angular distance θb[J]. J. Atmos. Sol.:Terr. Phys., 2012, 77:125-131
    [37] SHEN F, FENG X, XIANG C, et al. The statistical and numerical study of the global distribution of coronal plasma and magnetic field near 2.5Rs over a 10-year period[J]. J. Atmos. Sol.:Terr. Phys., 2010, 72(13):1008-1018
    [38] GARY G A. Plasma beta above a solar active region:rethinking the paradigm[J]. Sol. Phys., 2001, 203(1):71-86
    [39] GOSLING J, PIZZO V. Formation and Evolution of Corotating Interaction Regions and Their Three Dimensional Structure[M]. Corotating Interaction Regions:Springer, 1999:21-52
  • 加载中
计量
  • 文章访问数:  1259
  • HTML全文浏览量:  129
  • PDF下载量:  85
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2019-02-14
  • 修回日期:  2019-07-25
  • 刊出日期:  2020-05-15

目录

    /

    返回文章
    返回