留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

簇飞行航天器网络动态连接和路径时空演进特性

莫金容 胡圣波 施燕峰 宋小伟 鄢婷婷

莫金容, 胡圣波, 施燕峰, 宋小伟, 鄢婷婷. 簇飞行航天器网络动态连接和路径时空演进特性[J]. 空间科学学报, 2020, 40(4): 562-571. doi: 10.11728/cjss2020.04.562
引用本文: 莫金容, 胡圣波, 施燕峰, 宋小伟, 鄢婷婷. 簇飞行航天器网络动态连接和路径时空演进特性[J]. 空间科学学报, 2020, 40(4): 562-571. doi: 10.11728/cjss2020.04.562
MO Jinrong, HU Shengbo, SHI Yanfeng, SONG Xiaowei, YAN Tingting. Characteristics of Dynamic Connection and Path Spatial-temporal Evolution in Cluster Flight Spacecraft Network[J]. Journal of Space Science, 2020, 40(4): 562-571. doi: 10.11728/cjss2020.04.562
Citation: MO Jinrong, HU Shengbo, SHI Yanfeng, SONG Xiaowei, YAN Tingting. Characteristics of Dynamic Connection and Path Spatial-temporal Evolution in Cluster Flight Spacecraft Network[J]. Journal of Space Science, 2020, 40(4): 562-571. doi: 10.11728/cjss2020.04.562

簇飞行航天器网络动态连接和路径时空演进特性

doi: 10.11728/cjss2020.04.562
基金项目: 

国家自然科学基金项目资助(6156010183)

详细信息
    作者简介:

    莫金容,E-mail:16030060013@gznu.edu.cn

    通讯作者:

    胡圣波,E-mail:hsb@nssc.ac.cn

  • 中图分类号: V11

Characteristics of Dynamic Connection and Path Spatial-temporal Evolution in Cluster Flight Spacecraft Network

  • 摘要: 簇飞行航天器模块的高速飞行增加了网络拓扑的不确定性.为优化簇飞行航天器的轨道设计,提升簇飞行航天器网络性能,在簇飞行航天器节点动态连接的基础上,开展基于概率连接矩阵的簇飞行航天器网络动态连接和路径时空演进特性研究.基于航天器双星伴飞模式,建立了簇飞行航天器节点移动模型,运用经验统计和曲线拟合的分析方法,得到簇飞行航天器网络节点间的距离密度函数;利用簇飞行航天器网络节点间相对距离有界的约束,给出节点连接距离的阈值范围;利用STK生成的轨道数据,通过给出序贯路径定义和一种新的矩阵乘法运算,得到节点多跳序贯路径的概率连接矩阵,分析轨道超周期内节点动态连接和路径时空演进特性,为簇飞行航天器网络的设计和优化提供理论参考.

     

  • [1] MAZAL L, GURFIL P. Cluster flight algorithms for disaggregated satellites[J]. J. Guid. Cont. dyn., 2013, 36(1):124-135
    [2] NAG S, GATEBE C K, WECK O D. Observing system simulations for small satellite formations estimating bidirectional reflectance[J]. Int. J. Appl. Earth Observ. Geo. Inf., 2015, 43(2):102-118
    [3] CHU J, GUO J, GILL E K A. Distributed asynchronous planning and task allocation algorithm for autonomous cluster flight of fractionated spacecraft[J]. Int. J. Space Sci. Eng., 2014, 2(2):205-223
    [4] ZIMMERMAN F G, GURFIL P. Optimal target states for satellite cluster flight control on near-circular orbits[J]. J. Guid. Cont. Dyn., 2015, 38(3):1-9
    [5] ZHANG H, GURFIL P. Distributed control for satellite cluster flight under different communication topologies[J]. J. Guid. Cont. Dyn., 2015, :1-11
    [6] SELVA D, GOLKAR A, KOROBOVA O, et al. Distributed Earth satellite systems:what is needed to move forward[J]. J. Aerosp. Inf. Syst., 2017, 14(8):412-438
    [7] ANSARI R I, HASSAN S A, ALI S, et al. On the outage analysis of a D2D network with uniform node distribution in a circular region[J]. Phys. Commun., 2017, 25(1):277-283
    [8] YAN Tingting, HU Shengbo, MO Jinrong. Path formation time in the noise-limited fractionated spacecraft network with FDMA[J]. Int. J. Aerosp. Eng., 2018.DOI: org/10.1155/2018/9124132
    [9] WU J. Connectivity of mobile linear networks with dynamic node population and delay constraint[J]. IEEE J. Sel. Areas Commun., 2009, 27:1218-1225
    [10] BROOKS R R, PILLAI B, RACUNAS S, et al. Mobile network analysis using probabilistic connectivity matrices[J]. IEEE Trans. Syst. Man Cybern. Part C:Appl. Rev., 2007, 37(4):694-702
    [11] PADMAVATHY N, CHATURVEDI S K. Reliability evaluation of mobile AD HOC network:with and without mobility consideration[J]. Proced. Comput. Sci., 2015, 46:1126-1139
    [12] MAO G. A New Measure of Wireless Network Connectivity[M]. New York:Connectivity of Communication Networks Springer International Publishing, 2017
    [13] NAGHSHIN V, RABIEI A, BEAULIEU N, et al. Accurate statistical analysis of a single interference in random networks with uniformly distributed nodes[J]. IEEE Commun. Lett., 2014, 18(2):197-200
    [14] ZHUANG Y, LUO Y, CAI, et al. A geometric probability model for capacity analysis and interference estimation in wireless mobile cellular systems[C]//Global Telecommunications Conference. Houston:IEEE, 2012. DOI: 10.1109/GLOCOM.2011.6134503
    [15] BALTZIS K B. Analytical and closed-form expressions for the distribution of path loss in hexagonal cellular networks[J]. Wirel. Personal Commun., 2011, 60(4):599-610
    [16] FAN P, LI G, CAI K, et al. On the geometrical characteristic of wireless ad-hoc networks and its application in network performance analysis[J]. IEEE Trans. Wirel. Commun., 2007, 6(4):1256-1265
    [17] AHMADI M, TONG F, ZHENG L, et al. Performance analysis for two-tier cellular systems based on probabilistic distance models[C]//IEEE Infocom-IEEE Conference on Computer Communications. Hong Kong:IEEE, 2015
    [18] WEBER S, ANDREWS J, JINDAL N. An overview of the transmission capacity of wireless networks[J]. IEEE Trans. Commun., 2010, 58(12):3593-3604
    [19] MULLEN J P. Robust approximations to the distribution of link distances in a wireless network occupying a rectangular region[J]. ACM Sigmob. Mob. Comput. Commun. Rev., 2003, 7(2):80-91
    [20] BALTZIS K B. A geometric method for computing the nodal distance distribution in mobile networks[J]. Prog. Electromagnet. Res., 2011, 114:159-175
    [21] SANTALO L A, KAC M. Integral Geometry and Geometric Probability[M]. 2nd ed. Cambridge:Cambridge University Press, 2004
    [22] TONG F, WAN Y, ZHENG L, et al. A probabilistic distance-based modeling and analysis for cellular networks with underying device-to-device communications[J]. IEEE Trans. Wirel. Commun., 2017, 16(1):451-463
    [23] TONG F, PAN J. Random-to-Random nodal distance distributions in finite wireless networks[J]. IEEE Trans. Veh. Technol., 2017, 66(11):10070-10083
    [24] MAZAL L, GURFIL P. Cluster flight for fractionated spacecraft[J]. Adv. Astronaut. Sci., 2011, 140:1545-1564
    [25] HUANG J, SU Y, HUANG L, et al. An optimized snapshot division strategy for satellite network in GNSS[J]. IEEE Commun. Lett., 2016, 99:1
    [26] KANDHALU A, RAJKUMAR R. QoS-Based resource allocation for next-generation spacecraft networks[C]//Proceedings of the 33rd IEEE Real-Time Systems Symposium, RTSS 2012. San Juan:IEEE, 2012
    [27] DASGUPTA A. Finite sample theory of order statistics and extremes[M]//Probability for Statistics and Machine Learning. Berlin:Springer, 2011:221-248
    [28] VANDERVAART A W. Asymptotic Statistics[M]. Cambridg:Cambridge University Press, 1998
    [29] PARK J, BARABASI A L. Distribution of node characteristics in complex networks[J]. Proc. Natl. Acad. Sci. USA, 2007, 104:17916-17920
  • 加载中
计量
  • 文章访问数:  399
  • HTML全文浏览量:  6
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-22
  • 修回日期:  2020-02-15
  • 刊出日期:  2020-07-15

目录

    /

    返回文章
    返回