留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北斗卫星空间信号故障与监测性能指标定义

王梦丽 徐君毅 向才炳 姚李昊

王梦丽, 徐君毅, 向才炳, 姚李昊. 北斗卫星空间信号故障与监测性能指标定义[J]. 空间科学学报, 2020, 40(4): 572-577. doi: 10.11728/cjss2020.04.572
引用本文: 王梦丽, 徐君毅, 向才炳, 姚李昊. 北斗卫星空间信号故障与监测性能指标定义[J]. 空间科学学报, 2020, 40(4): 572-577. doi: 10.11728/cjss2020.04.572
WANG Mengli, XU Junyi, XIANG Caibing, YAO Lihao. Fault and Detection Performance Definition of Beidou Satellite Space Signal[J]. Chinese Journal of Space Science, 2020, 40(4): 572-577. doi: 10.11728/cjss2020.04.572
Citation: WANG Mengli, XU Junyi, XIANG Caibing, YAO Lihao. Fault and Detection Performance Definition of Beidou Satellite Space Signal[J]. Chinese Journal of Space Science, 2020, 40(4): 572-577. doi: 10.11728/cjss2020.04.572

北斗卫星空间信号故障与监测性能指标定义

doi: 10.11728/cjss2020.04.572 cstr: 32142.14.cjss2020.04.572
基金项目: 

国家自然科学基金项目资助(41374038)

详细信息
    作者简介:
    • 王梦丽,E-mail:compass2020@126.com
  • 中图分类号: P228.41

Fault and Detection Performance Definition of Beidou Satellite Space Signal

  • 摘要: 卫星导航系统指标分配与论证是指导和约束各大系统方案设计及工程实现的重要依据.完好性和连续性是系统服务性能的关键指标,能否满足用户需求主要取决于其中的空间信号故障和监测性能指标.以用户完好性和连续性要求为设计依据,定义了空间信号故障次数、平均故障率、故障漏检率、虚警率等系统指标与完好性、连续性等风险概率之间的转换关系.针对北斗系统及星座构成特点,按照国际民航组织规定的用户完好性和连续性风险概率需求,分析了不同空间信号故障条件对系统完好性监测性能的指标要求.研究结果可为北斗全球系统可靠性指标论证和设计提供依据和参考.

     

  • [1] Department of Defense. Global Positioning System Standard Positioning Service Performance Standard, 4th Edition[R]. Washington:Department of Defense, 2008
    [2] KARL KOVACH, JOHN DOBYNE, MARK CREWS, et al. GPS I!I!I integrity concept[C]//Proceeding of ION GNSS 2008. Savannah:ION, 2008:2250-2257
    [3] OEHLER V, LUONGO F, BOYERO J P, et al. The Galileo integrity concept[C]//Proceeding of ION GNSS 2004. Long Beach:ION, 2004:604-615
    [4] GREWAL M, HABEREDER H. Overview of the SBAS integrity design[C]//The European Navigation Conference 2003. Graz:European Group of Institutes of Navigation, 2003:22-25
    [5] TOSSAINT M. The Stanford-ESA integrity diagram:focusing on SBAS integrity[C]//Proceeding of ION GNSS 2006. Fort Worth:ION, 2006:26-29
    [6] CHEN Jinping. Analysis of the GNSS augmentation technology architecture[C]//Proceeding of ION GNSS 2011. Portland:ION, 2011:247-266
    [7] GRATTON L, JOERGER M, PERVAN B. Carrier phase relative RAIM algorithms and protection level derivation[J]. J. Inst. Nav., 2010, 63(2):215-216
    [8] LEE Y C. A position domain relative RAIM method[J]. IEEE Trans. Aerosp. Elec. Syst., 2011, 47(1):85-97
    [9] ANON. Annex 10 to the Convention on International Civil Aviation, International Standards and Recommended Practices (SARPs), Volume I-Radio Navigation Aids[R]. Montreal:International Civil Aviation Organization, 2006
    [10] WOLF R. Onboard autonomous integrity monitoring using intersatellite links[C]//Proceeding of ION GPS 2000. Salt Lake City:ION, 2000:247-266
    [11] HENG L, GAO G X, WALTER T, et al. GPS Signal-in-space integrity performance evolution in the last decade[J]. IEEE Trans. Aerosp. Elec. Syst., 2012, 48(4):2932-2946
    [12] PHLONG W, ELROD B. Availability characteristics of GPS and augmentation alternatives[J]. J. Inst. Nav., 1994, 40(4):409-428
    [13] RTCA DO-229D. Minimum Operational Performance Standards for GPS/Wide Area Augmentation System Airborne Equipment[R]. Washington:International Civil Aviation Organization, 2006
  • 加载中
计量
  • 文章访问数:  1950
  • HTML全文浏览量:  308
  • PDF下载量:  123
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2019-04-26
  • 修回日期:  2019-12-23
  • 刊出日期:  2020-07-15

目录

    /

    返回文章
    返回