留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间机器人双臂捕获航天器操作的无源自抗扰避撞从顺控制

艾海平 陈力

艾海平, 陈力. 空间机器人双臂捕获航天器操作的无源自抗扰避撞从顺控制[J]. 空间科学学报, 2020, 40(4): 584-594. doi: 10.11728/cjss2020.04.584
引用本文: 艾海平, 陈力. 空间机器人双臂捕获航天器操作的无源自抗扰避撞从顺控制[J]. 空间科学学报, 2020, 40(4): 584-594. doi: 10.11728/cjss2020.04.584
AI Haiping, CHEN Li. Passivity Active Disturbance Rejection Collision Avoidance Compliant Control of Dual-arm Space Robot Capture Spacecraft[J]. Journal of Space Science, 2020, 40(4): 584-594. doi: 10.11728/cjss2020.04.584
Citation: AI Haiping, CHEN Li. Passivity Active Disturbance Rejection Collision Avoidance Compliant Control of Dual-arm Space Robot Capture Spacecraft[J]. Journal of Space Science, 2020, 40(4): 584-594. doi: 10.11728/cjss2020.04.584

空间机器人双臂捕获航天器操作的无源自抗扰避撞从顺控制

doi: 10.11728/cjss2020.04.584
基金项目: 

国家自然科学基金项目(11372073,11072061)和福建省工业机器人基础部件技术重大研发平台项目(2014H21010011)共同资助

详细信息
    作者简介:

    艾海平,E-mail:ahpwuhan@163.com.

    通讯作者:

    陈力,E-mail:chnle@fzu.edu.cn

  • 中图分类号: V42;TP241

Passivity Active Disturbance Rejection Collision Avoidance Compliant Control of Dual-arm Space Robot Capture Spacecraft

  • 摘要: 针对空间机器人双臂捕获非合作航天器过程中避免关节受冲击破坏的避撞从顺控制问题,在机械臂与关节电机之间设计了一种由旋转型串联弹性执行器(RSEA)构成的弹簧缓冲装置.通过缓冲弹簧变形来吸收捕获碰撞阶段产生的冲击能量,并采用合理的避撞从顺控制策略,保证镇定运动阶段关节受到的冲击力矩限制在安全范围内.应用拉格朗日方法及牛顿elax-elax欧拉法,分别建立捕获前双臂空间机器人开环系统及航天器系统动力学模型;结合冲量定理、闭链系统位置及运动学关系,得到捕获操作后两者所构成闭链混合体系统的动力学模型.为实现失稳混合体系统的镇定,提出了一种基于无源性理论的自抗扰避撞从顺控制方案.此外,运用最小权值范数法对机械臂各关节力矩进行分配,保证了各臂协调操作.通过数值模拟,验证了缓冲装置的抗冲击性能及控制策略的有效性.

     

  • [1] FLORES-ABAD A, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Prog. Aerosp. Sci., 2014, 68:1-26
    [2] DAI Qiaolian, CHEN Li. L2 Back-stepping control based on disturbance observer for space robot under dead-zone effect[J]. Chin. J. Space Sci., 2017, 37(4):499-506(戴巧莲, 陈力. 具有死区特性的空间机器人基于干扰观测器的L2反步控制[J]. 空间科学学报, 2017, 37(4):499-506)
    [3] GUO Chuangqiang, NI Fenglei, LIU Hong. Spacecraft attitude disturbance optimization of space robot under multi-position restraint[J]. Chin. J. Space Sci., 2015, 35 (2):230-236(郭闯强, 倪风雷, 刘宏. 多目标位姿约束下空间机器人载体姿态扰动优化[J]. 空间科学学报, 2015, 35(2):230-236)
    [4] YU X Y, CHEN L. Singular perturbation adaptive control and vibration suppression of free-flying flexible space manipulators[J]. Proc. Inst. Mech. Eng. Part C:J. Mech. Eng. Sci., 2015, 229(11):1989-1997
    [5] BONING P, DUBOSKY S. A kinematic approach to determining the optimal actuator sensor architecture for space robots[J]. Int. J. Robot. Res., 2011, 30(9):1194-1204
    [6] ZHAO Hang, ZHAO Yang, TIAN Hao, et al. Key techniques and applications of space cellular robotic system[J]. J. Astronaut., 2018, 39(10):16-25(赵航, 赵阳, 田浩, 等. 空间细胞机器人系统关键技术及其应用[J]. 宇航学报, 2018, 39(10):16-25)
    [7] YUAN Changqing, LI Junfeng, WANG Tianshu, et al. An optimal and robust attitude-tracking control of spacecraft based on inverse system method[J]. Eng. Mech., 2008, 25(2):214-218(袁长清, 李俊峰, 王天舒, 等. 基于逆系统方法的航天器姿态跟踪最优鲁棒控制[J]. 工程力学, 2008, 25(2):214-218)
    [8] PENG J Q, XU W F, LIANG B, et al. Pose measurement and motion estimation of space non-cooperative targets based on Laser Radar and stereo-vision fusion[J]. IEEE Sens. J., 2019, 19(8):3008-3019
    [9] JIA Y H, HU Q, XU S J. Dynamics and adaptive control of a dual-arm space robot with closed-loop constraints and uncertain inertial parameters[J]. Acta Mech. Sin., 2014, 30(1):112-124
    [10] CHENG Jing, CHEN Li. Elm neural network control of attitude management and auxiliary docking maneuver after dual-arm space robot capturing spacecraft[J]. Robot, 2017, 39(5):724-732(程靖, 陈力. 空间机器人双臂捕获航天器后姿态管理、辅助对接操作一体化ELM神经网络控制[J]. 机器人, 2017, 39(5):724-732)
    [11] REKLEITIS G, PAPADOPOULOS E. On-orbit cooperating space robotic servicers handling a passive object[J]. IEEE Trans. Aerosp. Electron. Syst., 2015, 51(2):802-814
    [12] AGHILI F. A prediction and motion-planning scheme for visually guided robotic capturing of free-Floating tumbling objects with uncertain dynamics[J]. IEEE Trans. Robot., 2012, 28(3):634-649
    [13] OKI T, ABIKO S, NAKANISHI H, et al. Time-optimal detumbling maneuver along an arbitrary arm motion during the capture of a target satellite[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco:IEEE, 2011:625-630
    [14] GU X, WANG K, CHENG T, et al. Mechanical design of a 3-DOF humanoid soft arm based on modularized series elastic actuator[C]//IEEE International Conference on Mechatronics and Automation. Beijing:IEEE, 2015:1127-1131
    [15] WANG M, SUN L, YI W, et al. Nonlinear disturbance observer based torque control for series elastic actuator[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Daejeon:IEEE, 2016:286-291
    [16] HUANG Y, XUE W. Active disturbance rejection control:methodology and theoretical analysis[J]. ISA Trans., 2014, 53(4):963-976
    [17] REN C, MA S. Passivity-based model free control of an omnidirectional mobile robot[C]//IEEE International Conference on Mechatronics. Nagoya:IEEE, 2015:262-267
    [18] QING Z, LINDA Q. On Stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics[C]//IEEE Conference on Decision and Control. New Orleans:IEEE, 2007:12-14
  • 加载中
计量
  • 文章访问数:  444
  • HTML全文浏览量:  5
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-20
  • 修回日期:  2019-07-27
  • 刊出日期:  2020-07-15

目录

    /

    返回文章
    返回