[1] |
GUO H D, LIU Z, JIANG H, et al. Big Earth Data:a new challenge and opportunity for Digital Earth's development[J]. Int. J. Digit. Earth, 2017, 10(1):1-12
|
[2] |
GUO H D. Big data drives the development of Earth science[J]. Big Earth Data, 2017, 1(1/2):1-3
|
[3] |
GUO H D, LIU G, DING Y X. Moon-based Earth observation:scientific concept and potential applications[J]. Int. J. Digit. Earth, 2018, 11(6):546-557
|
[4] |
CHEN L, JIA J, WANG H Q. An overview of applying high resolution remote sensing to natural resources survey[J]. Remote Sens. Land Resources, 2019, 31(1):1-7
|
[5] |
YE H L, GUO H D, LIU G, et al. Observation scope and spatial coverage analysis for earth observation from a Moon-based platform[J]. Int. J. Remote Sens., 2017:1-25
|
[6] |
GUO H D, REN Y Z, LIU G, et al. The angular characteristics of Moon-based Earth observations[J]. Int. J. Digit. Earth, 2020, 13(3):339-354
|
[7] |
YE H L, GUO H D, LIU G, et al. Impacts of platform's position errors on geolocation for a Moon-based sensor[J]. IEEE Geos. Remote Sens. Lett., 2020, 17(1):112-116
|
[8] |
ZHANG L, GUO H D, JIAO H, et al. A polar coordinate system based on a projection surface for Moon-based Earth observation images[J]. Adv. Space Res., 2019, 64(11):2209-2220
|
[9] |
XU Zhen, CHEN Kunshan. Effects of the Earth's curvature and lunar revolution on the imaging performance of the Moon-based synthetic aperture radar[J]. IEEE Trans. Geosci. Remote Sen., 2019, 57(8):5868-5882
|
[10] |
NIE Chenwei, LIAO Jingjuan, SHEN Guozhuang, DUAN Wentao. Simulation of the land surface temperature from Moon-based Earth observations[J]. Adv. Space Res., 2019, 63(2):826-839
|
[11] |
GUO H D, FU W X, LIU G. Scientific Satellite and Moon-based Earth Observation for Global Change[M]. Singapore:Springer, 2019
|
[12] |
GUO H D, WANG L Z, LIANG D. Big Earth data from space:a new engine for Earth science[J]. Sci. Bull., 2016, 61(7):505-513
|
[13] |
GUO H D. Scientific big data:a footstone of national strategy for big data[J]. Bull. Chin. Acad. Sci., 2018, 33(8):768-773
|
[14] |
GUO H D, GOODCHILD M F, ANNONI A. Manual of Digital Earth[M]. Singapore:Springer, 2020
|
[15] |
GUO H D. Steps to the digital silk road[J]. Nature, 2018, 554(7690):25-27
|
[16] |
GUO H D. Big Earth Data in Support of the Sustainable Development Goals[M]. Beijing:Science Press and EDP Sciences, 2019
|
[17] |
YANG S Q. Development and prospect of disaster remote sensing monitoring system[J]. City Disaster Reduction, 2018, 6:12-19
|
[18] |
SHEN Xuhui, ZHANG Xueming, CUI Jing, et al. Remote sensing application in earthquake science research and geophysical fields exploration satellite mission in China[J]. J. Remote Sens., 2018, 22(S1):5-20
|
[19] |
LI Qiang. Study on Key Technology of Earthquake Emergency using Multi-Mode Remote Sensing Data[D]. Harbin:Institute of Engineering Mechanics, China Earthquake Administration, 2018
|
[20] |
WANG Zhiyi, XU Suning, WANG Na, et al. Application of the high resolution optical and SAR remote sensing data images induced by the Jiuzhaigou M7.0 earthquake geological hazards survey[J]. Chin. J. Geolog. Hazard Control, 2018, 29(5):81-88
|
[21] |
DONG Xiujun, XU Qiang, SHE Jinxing, et al. Preliminary study on the interpretation of geological hazards in jiuzhaigou based on multi-source remote sensing data[J]. Geomat. Inf. Sci.Wuhan Univ., 2020, 45(3):432-441
|
[22] |
DING Jia. Chinese Academy of Sciences launches remote sensing dynamic monitoring for the tenth anniversary of the Wenchuan earthquake[OL] [2018-04-17]. Beijing:China Science Daily, 2018. http://www.cas.cn/cm/201804/t20180417_4642260.shtml
|
[23] |
LIU Ming, JIA Dan. Application of satellite remote sensing technology in forest fire fighting[J]. City Disaster Reduction, 2018, 6:66-70
|
[24] |
YANG D, LIU Y, CAI Z, et al. First global carbon dioxide maps produced from TanSat measurements[J]. Adv. Atmos. Sci., 2018, 35(6):621-623
|
[25] |
LI X, XIAO J. A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data[J]. Remote Sens., 2019, 11(5):517
|
[26] |
LONG T, ZHANG Z, HE G, et al. 30 m resolution global annual burned area mapping based on landsat images and Google Earth engine[J]. Remote Sens., 2019, 11(5). arXiv:1805.02579
|
[27] |
ZHANG Shuang, WU Jian, WEN xuanfan, et al. Review of aerosol optical depth retrieval using visibility data[J]. Earth Sci. Rev., 2020, 200:102986
|
[28] |
XU Y, LIU J, XIE L, et al. China-France Oceanography Satellite (CFOSAT) simultaneously observes the typhoon-induced wind and wave fields[J]. Acta Ocean. Sin., 2019, 38(11):158-161
|
[29] |
LIU Q H, WU J J, LI L, et al. Ecological environment monitoring for sustainable development goals in the Belt and Road region[J]. J. Remote Sens., 2018, 22(4):686-708
|
[30] |
WU Wenjin, SUN Xiaohui, EPSTEIN H, et al. Spatial heterogeneity of climate variation and vegetation response for Arctic and high-elevation regions from 2001-2018[J]. Environ. Res. Commun., 2020, 2(1). DOI: 10.1088/2515-7620/ab6369
|
[31] |
LIANG D, GUO H D, ZHANG L, et al. Analyzing Antarctic ice sheet snowmelt with dynamic Big Earth Data[J]. Int. J. Digit. Earth, 2020. DOI: 10.1080/17538947.2020.1798522
|
[32] |
GUO H D. A project on Big Earth data science engineering[J]. Bull. Chin. Acad. Sci., 2018, 33(8):818-824
|
[33] |
GUO H D, NATIVI Stefano, LIANG D, et al. Big Earth data science:an information framework for a sustainable planet[J]. Int. J. Digit. Earth, 2020, 13:7, 743-767
|