留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧气A(0,0)波段气辉体发射率和临边辐射强度模拟与分析

杨晓君 王后茂 王咏梅

杨晓君, 王后茂, 王咏梅. 氧气A(0,0)波段气辉体发射率和临边辐射强度模拟与分析[J]. 空间科学学报, 2020, 40(6): 1039-1045. doi: 10.11728/cjss2020.06.1039
引用本文: 杨晓君, 王后茂, 王咏梅. 氧气A(0,0)波段气辉体发射率和临边辐射强度模拟与分析[J]. 空间科学学报, 2020, 40(6): 1039-1045. doi: 10.11728/cjss2020.06.1039
YANG Xiaojun, WANG Houmao, WANG Yongmei. Simulation and Analysis on Volume Emission Rate and Limb Radiation Intensity of Airglow at Oxygen A(0, 0) Band[J]. Journal of Space Science, 2020, 40(6): 1039-1045. doi: 10.11728/cjss2020.06.1039
Citation: YANG Xiaojun, WANG Houmao, WANG Yongmei. Simulation and Analysis on Volume Emission Rate and Limb Radiation Intensity of Airglow at Oxygen A(0, 0) Band[J]. Journal of Space Science, 2020, 40(6): 1039-1045. doi: 10.11728/cjss2020.06.1039

氧气A(0,0)波段气辉体发射率和临边辐射强度模拟与分析

doi: 10.11728/cjss2020.06.1039
基金项目: 

国家自然科学基金项目资助(41704178)

详细信息
    作者简介:

    杨晓君,E-mail:569653045@qq.com

  • 中图分类号: P352

Simulation and Analysis on Volume Emission Rate and Limb Radiation Intensity of Airglow at Oxygen A(0, 0) Band

  • 摘要: 临近空间大气参数如温度、密度、风场等对预报模型精度及航天器运行安全等有较大的影响,而气辉的辐射模拟是大气参数反演的重要过程.本文基于光化学模型计算了氧气A(0,0)波段气辉的体发射率和临边辐射强度.基于氧气A(0,0)波段气辉的光化学反应机制、大气动力学和光化学反应理论,建立产生O2(b1Σg+)的光化学模型.计算气辉体发射率,基于临边探测几何路径进行气辉辐射强度模拟.体发射率计算结果与AURIC模型结果的辐射值及辐射高度均一致.基于计算和模拟结果,对氧气A波段气辉体发射率和辐射强度的影响因素进行了分析.

     

  • [1] WANG Yingjian. Effects of middle and upper atmosphere on satellite system[J]. China Sci., 2000, 30(12):17-20(王英鉴. 中高层大气对卫星系统的影响[J]. 中国科学, 2000, 30(12):17-20)
    [2] LIU Zhenxing. Space Physics[M]. Harbin: Harbin Institute of Technology Press, 2005(刘振兴. 太空物理学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2005)
    [3] CHRISTENSEN A B, YEE J H, BISHOP R L, et al. Observations of molecular oxygen atmospheric band emission in the thermosphere using the near infrared spectrometer on the ISS/RAIDS experiment[J]. J. Geophys. Res. Space Phys., 2012, 117(A4):DOI: 10.1029/2011ja016838
    [4] BUCHOLTZ A, SKINNER W R, ABREU V J, et al. The dayglow of the O2 atmospheric band system[J]. Planet. Space Sci., 1986, 34(11):1031-1035
    [5] SKINNER W R, HAYS P B. Brightness of the O2 atmospheric bands in the daytime thermosphere[J]. Planet. Space Sci., 1985, 33(1):17-22
    [6] HAYS P B, ABREU V J, DOBBS M E, et al. The high-resolution doppler imager on the upper atmosphere research satellite[J]. J. Geophys. Res. Atmos., 1993, 98(D6):10713-10723
    [7] ZARBOO A, BENDER S, BURROWS J P, et al. Retrieval of O2(1Σ) and O2(1△) volume emission rates in the mesosphere and lower thermosphere using SCIAMACHY MLT limb scans[J]. Atmos. Meas. Tech., 2018, 11:473-487
    [8] SKINNER W R, HAYS P B, GRASSL H J, et al. High-resolution doppler imager on the upper atmosphere research satellite[C]//Spies International Symposium on Optics. San Diego: International Society for Optics and Photonics, 1994
    [9] SHEPHERD G G, GERARD THUILLIER, GAULT W A, et al. WINDⅡ, the wind imaging interferometer on the upper atmosphere research satellite[J]. J. Geophys. Res. Atmos., 1993, 99(D10):21117
    [10] KILLEEN T L, WU Q, SOLOMON S C, et al. TIMED Doppler interferometer: overview and recent results[J]. J. Geophys. Res., 2006, 111(A10):10.1029/2005JA011484
    [11] SHEESE P E, LLEWELLYN E J, GATTINGER T L, et al. Temperatures in the upper mesosphere and lower thermosphere from OSIRIS observations of O2 A-band emission spectra[J]. Can. J. Phys., 2010, 88(12):919-925
    [12] LLEWELLYN E J, LLOYD N D, DEGENSTEIN D A, et al. The OSIRIS instrument on the odin spacecraft[J]. Can. J. Phys., 2004, 82(6):411-422
    [13] WALLACE L, HUNTEN D M. Dayglow of the oxygen a band[J]. J. Geophys. Res., 1968, 73(15):4813-4834
    [14] CAMPBELL I M, GRAY C N. Rate constants for O(3P) recombination and association with N(4S)[J]. Chem. Phys. Lett., 1973, 18(4):607-609
    [15] GREETR R G H, LLEWELLYN E J, SOLHEIM B H, et al. The excitation of O2(b1Σg+) in the nightglow[J]. Planet. Space Sci., 1981, 29(4):383-389
    [16] SLANGER T G, BLACK G. O(1S) In the lower thermosphere-Chapman vs Barth[J]. Planet. Space Sci., 1977, 25(1):79-88
    [17] NICHOLLS R W. Franck-condon factors to high vibrational quantum numbers v-o sub 2 band systems[J]. J. Res. Nat. Bur. Stand.: A Phys. Chem., 1965, 69A:369-373
    [18] ORTLAND D A, HAYS P B, SKINNER W R, et al. Remote sensing of mesospheric temperature and O2(1Σ) band volume emission rates with the high-resolution Doppler imager[J]. J. Geophys. Res.: Atmos., 1998, 103(D2):1821-1835
    [19] WANG Houmao, WANG Yongmei. Simulation of auric-2012 airglow radiation based on ultraviolet radiation transfer model[J]. Sci. China: Earth Sci., 2015, 45(11): 1768-1780(王后茂, 王咏梅. 基于紫外辐射传输模型AURIC-2012的气辉辐射模拟[J]. 中国科学: 地球科学, 2015, 45(11): 1768-1780)
    [20] PICONE J M. NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues[J]. J. Geophys. Res., 2002, 107(A12):1468
    [21] ABREU V J, BUCHOLTZ A, HAYS P B, et al. Absorption and emission line shapes in the O2 atmospheric bands-Theoretical model and limb viewing simulations[J]. Appl. Opt., 1989, 28(11):2128-2137
  • 加载中
计量
  • 文章访问数:  373
  • HTML全文浏览量:  31
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-15
  • 修回日期:  2019-09-29
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回