留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Surface Evolver的推进剂贮箱气液界面分析

姜志杰 吴宗谕 刘常青 黄奕勇 韩伟

姜志杰, 吴宗谕, 刘常青, 黄奕勇, 韩伟. 基于Surface Evolver的推进剂贮箱气液界面分析[J]. 空间科学学报, 2020, 40(6): 1066-1073. doi: 10.11728/cjss2020.06.1066
引用本文: 姜志杰, 吴宗谕, 刘常青, 黄奕勇, 韩伟. 基于Surface Evolver的推进剂贮箱气液界面分析[J]. 空间科学学报, 2020, 40(6): 1066-1073. doi: 10.11728/cjss2020.06.1066
JIANG Zhijie, WU Zongyu, LIU Changqing, HUANG Yiyong, HAN Wei. Liquid-gas Interface Analysis of Propellant Tank Based on Surface Evolver[J]. Journal of Space Science, 2020, 40(6): 1066-1073. doi: 10.11728/cjss2020.06.1066
Citation: JIANG Zhijie, WU Zongyu, LIU Changqing, HUANG Yiyong, HAN Wei. Liquid-gas Interface Analysis of Propellant Tank Based on Surface Evolver[J]. Journal of Space Science, 2020, 40(6): 1066-1073. doi: 10.11728/cjss2020.06.1066

基于Surface Evolver的推进剂贮箱气液界面分析

doi: 10.11728/cjss2020.06.1066
基金项目: 

中国科学院前沿科学重点研究计划项目资助(QYZDY-SSW-JSC040)通信作者吴宗谕,

详细信息
    作者简介:

    吴宗谕,E-mail:wuzongyu@nudt.edu.cn

  • 中图分类号: V524

Liquid-gas Interface Analysis of Propellant Tank Based on Surface Evolver

  • 摘要: 推进剂贮箱是航天器系统的重要部件,用于实现推进剂的管理与输运.在空间微重力条件下,贮箱内部液面呈弯曲状,掌握其液面分布特性是保证贮箱正常工作的前提.针对球形推进剂贮箱,采用Surface Evolver软件对其内部气液自由界面分布特性展开研究,分析充液比、接触角、Bond数等参数对贮箱液面的影响,得到液面分布随各参数的变化规律.研究结果表明,球形贮箱液面曲率随充液比的增大而增大,随接触角或Bond数的增大而减小.研究结果有助于实现推进剂贮箱液面快速分析,为贮箱及推进剂管理装置设计提供参考.

     

  • [1] VELDMAN A E, GERRITS J, LUPPES R, et al. The numerical simulation of liquid sloshing on board spacecraft[J]. J. Comput. Phys., 2007, 224(1):82-99
    [2] ELITZUR S, ROSENBAND V, GANY A. Combined energy production and waste management in manned spacecraft utilizing on-demand hydrogen production and fuel cells[J]. Acta Astronaut., 2016, 128:580-583
    [3] BERGLUND M D, BASSETT C E, KELSO J M, et al. The Boeing Delta IV launch vehicle pulse-settling approach for second-stage hydrogen propellant management[J]. Acta Astronaut., 2007, 61(1):416-424
    [4] HIBBARD R L. Satellite on-orbit Refueling: a Cost Effectiveness Analysis[D]. California: Naval Postgraduate School, 1996
    [5] DENG M, YUE B. Nonlinear model and attitude dynamics of flexible spacecraft with large amplitude slosh[J]. Acta Astronaut., 2017, 133:111-120
    [6] ZHOU Z, HUANG H. Constraint surface model for large amplitude sloshing of the spacecraft with multiple tanks[J]. Acta Astronaut., 2015, 111:222-229
    [7] GASBARRI P, SABATINI M, PISCULLI A. Dynamic modelling and stability parametric analysis of a flexible spacecraft with fuel slosh[J]. Acta Astronaut., 2016, 127:141-159
    [8] WU Zongyu, HUANG Yiyong, CHEN Xiaoqian, et al. Surrogate modeling for liquid-gas interface determination under microgravity[J]. Acta Astronaut., 2018, 152:71-77
    [9] CONCUS P. Static menisci in a vertical right circular cylinder[J]. J. Fluid Mech., 1968, 34(3):481-495
    [10] BAO G. Numerical calculation of steady meniscus of liquid in a slow spin container under a micro gravity field[J]. Tech. Mech., 1994, 14(2):147-154
    [11] YANG D, YUE B, ZHU L, et al. Solving shapes of hydrostatic surface in rectangular and revolving symmetrical tanks under microgravity using shooting method[J]. Chin. J. Space Sci., 2012, 32(1):85-91
    [12] HASTINGS L J, RUTHERFORD Ⅲ R. Low Gravity Liquid-Vapor Interface Shapes in Axisymmetric Containers and a Computer Solution[R]. Washington: NASA, 1968
    [13] WANG Zhaolin, DENG Zhongping. Sloshing of liquid in spherical tank at low-gravity environments[J]. Chin. J. Space Sci., 1985, 5(4):294-302(王照林, 邓重平. 失重时球腔内液体晃动特性的研究[J]. 空间科学学, 1985, 5(4):294-302)
    [14] CHEN Y. Meniscus Stability in Rotating Systems[D]. Bremen: University of Bremen, 2015
    [15] STARK J, BRADSHAW R, BLATT M. Low-g Fluid Behavior Technology Summaries[R]. Washington: NASA, 1974
    [16] DODGE F T. Further Studies of Propellant Sloshing Under Low-Gravity Conditions[R]. Washington: NASA, 1971
    [17] THIBAUT A, CHEURET F, MARRAFFA L. Numerical and experimental investigation on the interface shape of cryogenic fluids in microgravity and spinning conditions[C]//7th European Symposium on Aerothermodynamics. Belgien: ESA, 2011
    [18] LI Zhangguo, LIU Qiusheng, JI Yan, et al. Numerical simulation of liquid-vapor interface tracking in tank of spacecraft[J]. Chin. J. Space Sci., 2008, 28(1):69-73(李章国, 刘秋生, 纪岩, 等. 航天器贮箱气液自由界面追踪数值模拟[J]. 空间科学学报, 2008, 28(1):69-73)
    [19] CHEN Lei, LI Yong, LIU Jintao, et al. Numerical simulation of fluid distribution in a vane type tank for on-orbit refueling[J]. Aerospace Control Appl., 2016, 42(5):53-62(陈磊, 李永, 刘锦涛, 等. 一种板式贮箱在轨加注过程流体分布的数值模拟[J]. 空间控制技术与应用, 2016, 42(5):53-62)
    [20] BRAKKE K A. The surface evolver[J]. Exp. Math., 1992, 1(2):141-165
    [21] ZHANG Liang, LI Zhendong, ZHAO Jianfu, et al. Fluid interface in space cryogenic propellant tank (A)[C]//National Conference on Multiphase Flow of CSET. Xi'an: Chinese Society of Engineering Thermophysics, 2014(张良, 李震东, 赵建福, 等. 空间低温推进剂贮箱内流体界面研究(A)[C]//西安: 中国工程热物理学会多相流学术会议中国工程热物理学会, 2014)
    [22] LI Yongqiang, YE Zhijun, LI Lihui. Surface Evolver calculation of free liquid surface configuration under microgravity[J]. J. Northeastern Univ.: Nat. Sci., 2016, 37(9):1364-1368(李永强, 叶致君, 李利辉. 微重力状态下自由液面构型的Surface Evovler软件计算[J]. 东北大学学报: 自然科学版, 2016, 37(9):1364-1368)
  • 加载中
计量
  • 文章访问数:  340
  • HTML全文浏览量:  63
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-27
  • 修回日期:  2020-10-12
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回