留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Polar卫星在低高度时表面正高电位的统计研究

何语璇 刘勇 张强

何语璇, 刘勇, 张强. Polar卫星在低高度时表面正高电位的统计研究[J]. 空间科学学报, 2020, 40(6): 1074-1083. doi: 10.11728/cjss2020.06.1074
引用本文: 何语璇, 刘勇, 张强. Polar卫星在低高度时表面正高电位的统计研究[J]. 空间科学学报, 2020, 40(6): 1074-1083. doi: 10.11728/cjss2020.06.1074
HE Yuxuan, LIU Yong, ZHANG Qiang. Statistical Study on the Positive High Potential of Polar Satellite at Low Altitude[J]. Journal of Space Science, 2020, 40(6): 1074-1083. doi: 10.11728/cjss2020.06.1074
Citation: HE Yuxuan, LIU Yong, ZHANG Qiang. Statistical Study on the Positive High Potential of Polar Satellite at Low Altitude[J]. Journal of Space Science, 2020, 40(6): 1074-1083. doi: 10.11728/cjss2020.06.1074

Polar卫星在低高度时表面正高电位的统计研究

doi: 10.11728/cjss2020.06.1074
详细信息
    作者简介:

    何语璇,E-mail:liuyong@spaceweather.ac.cn

  • 中图分类号: V442

Statistical Study on the Positive High Potential of Polar Satellite at Low Altitude

  • 摘要: 基于Polar卫星1996-2008年的表面电压数据,研究了卫星在低轨区域出现正高电位(异常事件)与太阳活动的关系及其发生位置的磁地方时(MLT)分布.研究表明:太阳辐射与异常事件发生次数呈正相关,太阳活动越活跃,异常事件出现次数越多,但不会影响航天器表面电位;异常事件发生占比呈现明显季节性变化,在太阳活动高年,冬季和夏季次数较多,春季和秋季次数较少,在太阳活动低年,每月次数均维持在较低水平,而一个月内异常事件次数没有明显规律;在分布上南北半球表现出相似性,异常事件均不会发生在地磁纬度50°-60°区域,极区和昏侧发生次数较多,而不同的是异常事件在南半球发生得更多更集中;虽然太阳活动与航天器在低高度时表面出现正高电位的次数呈正相关,但即使在太阳活动峰年,航天器异常事件发生率也不超过10%.

     

  • [1] KOONS H C, MAZUR J E, SELESNICK R S, et al. The impact of the space environment on space systems[C]// 6th Spacecraft Charging Technology Conference. Huntsville: University of Alabama Press, 2000
    [2] WANG Ji, QIU Jiawen, QIN Xiaogang, et al. Simulation of deep charging of spacecraft medium[J]. Chin. J. Space Sci., 2008, 28(3):242-247(王骥, 邱家稳, 秦晓刚, 等. 航天器介质深层充电模拟研究[J]. 空间科学学报, 2008, 28(3):242-247)
    [3] LAAKSO H, PEDERSEN A. Ambient electron density derived from differential potential measurements[J]. Geophys. Monogr. Ser., 1998, 4(1):34-40
    [4] GARRETT H B, RUBIN A G. Spacecraft charging at geosynchronous orbit-generalized solution for eclipse passage[J]. Geophys. Res. Lett., 1978, 5(10):865-868
    [5] PEDERSEN A. Solar wind and magnetosphere plasma diagnostics by spacecraft electrostatic potential measurements[J]. Ann. Geophys., 1995, 13(2):118-129
    [6] HARVEY P, MOZER F S, PANKOW D, et al. The electric field instrument on the polar satellite[J]. Space Sci. Rev., 1995, 71(1/2/3/4):583-596
    [7] MAYNARD N C. Electric Field Measurements in Moderate to High Density Space Plasmas with Passive Double Probes[M]. Washington D C: American Geophysical Union, 2013:13-27
    [8] PFAFF F, BOROVSKY E, YOUNG T. Measurement Techniques in Space Plasmas-fields[M]. Washington D C: American Geophysical Union, 1998
    [9] PEDERSEN A, CATTELL C A, F LTHAMMAR C G, et al. Quasistatic electric field measurements with spherical double probes on the GEOS and ISEE satellites[J]. Space Sci. Rev., 1984, 37(3/4):269-312
    [10] LAAKSO H, PFAFF R, JANHUNEN P. Polar observations of electron density distribution in the Earth’s magnetosphere. 2. density profiles[J]. Ann. Geophys., 2002, 20(11):1725-1735
    [11] STEINBERG J T, GURNETT D A, BANKS P M, et al. Double-probe potential measurements near the spacelab 2 electron beam[J]. J. Geophys. Res., 1988, 93(A9):10001
    [12] ESCOUBET C P, PEDERSEN A, SCHMIDT R, et al. Density in the magnetosphere inferred from ISEE 1 spacecraft potential[J]. J. Geophys. Res., 1997, 102(A8):75-83
    [13] SCUDDER J D, CAO X, MOZER F S. Photoemission current-spacecraft voltage relation: key to routine, quantitative low-energy plasma measurements[J]. J. Geophys. Res., 2000, 105(A9):21281-21294
    [14] MULLEN E G, GUSSENHOVEN M S, HARDY D A, et al. SCATHA survey of high-level spacecraft charging in sunlight[J]. J. Geophys. Res., 1986, 91(A2):1474
    [15] LAAKSO H. Variation of the spacecraft potential in the magnetosphere[J]. J. Atmos. Sol. Terr. Phys., 2002, 64(16):1735-1744
    [16] QIAN L, ROBLE R G, SOLOMON S C, et al. Calculated and observed climate change in the thermosphere, and a prediction for solar cycle 24[J]. Geophys. Res. Lett., 2006, 33(23):L23705
    [17] WANG Hongbo, XIONG Jianning, ZHAO Changyin. The mid-term forecast method of solar radiation index[J]. Chin. Astron. Astrophy., 2014, 55(4):302-312(汪宏波, 熊建宁, 赵长印. 太阳辐射指数F10.7的中期预报方法[J]. 天文学报, 2014, 55(4):302-312)
    [18] WU Yingyan. Seasonal variation and long-term variation of Sq intensity of geomagnetic field in Beijing area[J]. Chin. J. Geophys., 2018, 61(9):44-51(吴迎燕. 北京地区地磁场Sq强度的季节变化和长期变化[J]. 地球物理学报, 2018, 61(9):44-51)
    [19] MA R P, JI Q, XU J Y. Wavelet analysis of the quasi-27d oscillations of solar index F10.7[J]. Chin. Astron. Astrophy., 2007, 31(4):400-409
    [20] WANG Hui, MA Shuying, LUEHR H, et al. Field current distribution during intense magnetic storm and its response to interplanetary conditions: CHAMP satellite observation[J]. Chin. Sci. Bull., 2006, 51(24):2888-2897(王慧, 马淑英, LUEHR H, 等. 强磁暴期间场向电流分布及其对行星际条件的响应: CHAMP卫星观测[J]. 科学通报, 2006, 51(24):2888-2897)
    [21] JIAO Weixin, XIAO Zuo, RUSSELL C T. Statistical characteristics of filed current in earthquakes in earth[J]. Chin. J. Geophys., 1997, 40(4):453-459(焦维新, 肖佐, RUSSELL C T. 地球内磁层场向电流的统计特征[J]. 地球物理学报, 1997, 40(4):453-459)
    [22] LUHR H, WARNECKE J F, ROTHER M K A. An algorithm for estimating field-aligned currents from single spacecraft magnetic field measurements: a diagnostic tool applied to Freja satellite data[J]. IEEE Trans. Geosci. Remote Sens., 2002, 34(6):1369-1376
  • 加载中
计量
  • 文章访问数:  347
  • HTML全文浏览量:  14
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-24
  • 修回日期:  2020-03-14
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回