留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于有限差分法的双臂关节柔性空间机器人智能递阶控制策略

梁捷 秦开宇

梁捷, 秦开宇. 基于有限差分法的双臂关节柔性空间机器人智能递阶控制策略[J]. 空间科学学报, 2020, 40(6): 1125-1134. doi: 10.11728/cjss2020.06.1125
引用本文: 梁捷, 秦开宇. 基于有限差分法的双臂关节柔性空间机器人智能递阶控制策略[J]. 空间科学学报, 2020, 40(6): 1125-1134. doi: 10.11728/cjss2020.06.1125
LIANG Jie, QIN Kaiyu. Influence of Intelligent Hierarchical Control for Flexible-Joint Dual-arm Space Based on Finite Difference Method[J]. Journal of Space Science, 2020, 40(6): 1125-1134. doi: 10.11728/cjss2020.06.1125
Citation: LIANG Jie, QIN Kaiyu. Influence of Intelligent Hierarchical Control for Flexible-Joint Dual-arm Space Based on Finite Difference Method[J]. Journal of Space Science, 2020, 40(6): 1125-1134. doi: 10.11728/cjss2020.06.1125

基于有限差分法的双臂关节柔性空间机器人智能递阶控制策略

doi: 10.11728/cjss2020.06.1125
基金项目: 

四川省应用基础项目(2016JY0210)和基础与前沿技术研究基金项目(PJD20190128)共同资助

详细信息
    作者简介:

    梁捷,E-mail:myamoy81@163.com

    通讯作者:

    秦开宇,E-mail:kyqin@uestc.edu.cn

  • 中图分类号: TG156

Influence of Intelligent Hierarchical Control for Flexible-Joint Dual-arm Space Based on Finite Difference Method

  • 摘要: 谐波减速器和力矩传感器等柔性元件广泛应用于空间机器人关节系统,以获取高减速比.这些柔性元件为空间机器人系统引入关节柔性,使得对其的稳定控制变得更为复杂.本文讨论研究了参数不确定双臂关节柔性空间机器人基于有限差分法的智能递阶控制及弹性振动抑制.运用递阶系统理论、动量守恒原理及第二类拉格朗日方法推导出系统递阶动力学模型.利用该模型,设计了基于模糊回归神经网络的非奇异Terminal滑模控制算法和基于有限差分法的滑模控制算法.采用模糊回归神经网络(Recurrent Fuzzy Neural Network,RFNN)逼近系统的不确定部分.为避免复杂的求导计算及角加速度可测要求,利用基于有限差分法的滑模控制来抑制柔性关节振动.由于设计控制器过程中未涉及惯常的奇异摄动双时标分解操作,该控制算法理论上具有适合任意大小关节柔性刚度的优点.系统对比仿真试验证明了智能递阶控制算法优于传统基于奇异摄动法的控制方案.

     

  • [1] YU Z W, LIU X F, LI H Q. Dynamics and control of a 6-DOF space robot with flexible panels[J]. Proceed. Institut. Mech. Eng., Part G: J. Aerosp. Eng., 2017, 231(6): 1022-1034
    [2] FLORES A A, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Prog. Aerosp. Sci., 2014, 68:1-26
    [3] TOMASZ R, KAROL S, JUREK Z S. Trajectory optimization of space manipulator with non-zero angular momentum during orbital capture maneuver[C]//AIAA Guidance, Navigation, and Control Conference. San Diego:AIAA, 2016:4-8
    [4] PAN F H, DONG K W, ZHONG J M. Adaptive postcapture backstepping control for tumbling tethered space robot-target combination[J]. J. Guid., Control, Dynam., 2016, 39(1):150-156
    [5] ZHONG J M, PAN F H. Universal dynamic model of the tethered space robot[J]. J. Aerosp. Eng., 2016, 29(1):1022-1034
    [6] LI Junfeng, WANG Zhaolin. Study on attitude dynamics of a liquid-filled spacecraft with manipulators[J]. J. Astronaut., 1999, 20(2):81-86(李俊峰, 王照林. 带空间机械臂的充液航天器姿态动力学研究[J]. 宇航学报, 1999, 20(2):81-86)
    [7] GE Xinsheng, CUI Wei, ZHAO Qiuling. Trajectory tracking control and vibration suppression of rigid flexible manipulators[J]. Eng. Mech., 2005, 22(6):188-191(戈新生, 崔玮, 赵秋玲. 刚柔性耦合机械臂轨迹跟踪与振动抑制[J]. 工程力学, 2005, 22(6):188-191)
    [8] CAI Guoping, LI Lin, HONG Jiazhen. Optimal tracking control of a flexible hub-beam system[J]. Chin. J. Theor. Appl. Mech., 2006, 38(1):97-105(蔡国平, 李琳, 洪嘉振. 中心刚体—柔性梁系统的最优跟踪控制[J]. 力学学报, 2006, 38(1):97-105)
    [9] WANG Congqing, ZHANG Chenglong. Dynamic control of a free-floating flexible dual-arm space robotic system[J]. Chin. J. Mech. Eng., 2007, 43(10):196-200(王从庆, 张承龙. 自由浮动柔性双臂空间机器人系统的动力学控制[J]. 机械工程学报, 2007, 43(10):196-200)
    [10] YAN Shaoze, HUANG Tieqiu, WU Delong, et al. Study on dynamics modeling of a flexible appendage of spacecraft[J]. Missil. Space Veh., 1999, 2:31-39(阎绍泽, 黄铁球, 吴德隆, 等. 空间飞行器柔性附件动力学建模方法研究[J]. 导弹与航天运载技术, 1999, 2:31-39)
    [11] DING Xilun, YU Yushu. A multi-propeller and multi-function aero-robot and its motion planning of leg wall-climbing[J]. Acta Aeronaut. Astronaut. Sin., 2010, 31 (10):2075-2086(丁希仑, 俞玉树. 一种多旋翼多功能空中机器人及其腿式壁面行走运动规划[J]. 航空学报, 2010, 31(10): 2075-2086)
    [12] LIANG Jie, QIN Kaiyu, CHEN Li. Fuzzy neural network sliding mode control for assembled spacecraft after capture target satellite[J]. J. Dynam. Control, 2018, 16(2):180-192(梁捷, 秦开宇, 陈力. 捕获目标卫星后组合体航天器模糊神经网络滑模控制[J]. 动力学与控制学报, 2018, 16(2):180-192)
    [13] CHEN Y F, JIN J, WU X Y. Analysis of dynamical behavior of a planetary gear train[C]//Intelligent Robotics and Applications, Lecture Notes in Computer Science. Berlin: Springer, 2008:46-53
    [14] REINTSEMAD, LANDZETTELK, HIRZINGER G. DLR's Advanced Telerobotic Concepts and Experiments for On-orbit Servicing[M]. Berlin: Springer-Verlag, 2007: 323-345
    [15] LIU Fucai, GAO Jingfang, JIA Xiaojing. Adaptive network control of flexible-joint space manipulator in task space under gravity effect[J]. J. Astronaut., 2015, 36(12):1391-1397(刘福才, 高静方, 贾晓菁. 考虑重力影响的柔性关节空间机械臂任务空间神经网络控制[J]. 宇航学报, 2015, 36(12): 1391-1397)
    [16] ULRICH S, SASIADEK J Z. Extended kalman filtering for flexible joint space robot control[C]//Proceedings of the 2011 American Control Conference. San Francisco: IEEE, 2011:1021-1026
    [17] PAN Bo, YU Dengyun, SUN Jing. Research on dynamic modeling and analysis of joint in large space manipulator[J]. J. Astronaut., 2010, 22(8):1826-1831(潘博, 于登云, 孙京. 大型空间机械臂关节动力学建模与分析研究[J]. 宇航学报, 2010, 22(8):1826-1831)
    [18] XIE Limin, CHEN Li. Fuzzy sliding mode control and vibration on suppression of free-floating flexible-joint space manipulator[J]. Chin. Quart. Mech., 2012, 33(4):635-641(谢立敏, 陈力. 漂浮基柔性关节空间机械臂模糊滑模控制及振动抑制[J]. 力学季刊, 2012, 33(4):635-641)
    [19] LIANG Jie, CHEN Li, LIANG Pin. Adaptive fuzzy global sliding mode control and active hierarchical vibration suppression of space robot with flexible-link and flexible-joint[J]. J. Vibration Shock, 2016, 35(18):62-70(梁捷, 陈力, 梁频. 柔性空间机器人基于关节柔性补偿控控制器与虚拟力概念的模糊全局滑模控制及振动主动抑制[J]. 振动与冲击, 2016, 35(18):62-70)
    [20] STIEBER M E, TRUDE1 C P, HUNTER D G. Robotic syatems for the international space station[C]//Proceedings of the 1997 IEEE International Conference on Robotics and Automation. Albuquerque: IEEE, 1997: 3068-3073
    [21] SPONG M W. Modeling and control of elastic joint robots[J]. J. Dynam. Syst. Meas., Control, 1987, 109:310-319
    [22] LIANG Jie, CHEN Li. Fuzzy neural network control for a space-based robot with constrained actuators[J]. Eng. Mech., 2014, 31(11):190-197(梁捷, 陈力. 执行器受限空间机器人的模糊神经网络控制[J]. 工程力学, 2014, 31(11):190-197)
  • 加载中
计量
  • 文章访问数:  244
  • HTML全文浏览量:  13
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-12
  • 修回日期:  2020-09-17
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回