Effects of 180-day's Isolation on Bone, Glycolipid Metabolism and Their Correlation Analysis
-
摘要: 长期空间飞行过程中航天员处于狭小密闭的失重环境中,密闭环境对机体骨代谢与糖脂代谢的影响尚不明确.通过4人180天受控生态生保系统集成实验,分析长期处于密闭环境的4名志愿者血清中骨代谢、糖脂代谢指标变化,并根据骨与能量代谢相互调控理论,分析二者相关性.实验结果表明,长期密闭舱内生活影响了骨代谢与糖脂代谢,表现为骨形成指标(BGP,PICP,BAP)的下降趋势.入舱前中后期Insulin的变化幅度较大.脂代谢类指标也有下降趋势.相关性分析表明BGP与FRUC呈极显著的正相关(r=0.525,p=0.001);BGP与CHOL和LDL也呈显著正相关(r=0.376,p=0.024;r=0.391,p=0.018).长期密闭环境影响机体的骨代谢与糖脂代谢,且二者存在一定关联.Abstract: During the long-term space flight, the astronauts are in the confined weightlessness environment. However, the impact of confined environment on bone metabolism and glucose and lipid metabolism is not elucidated. In this paper, the changes of bone metabolism, glucose and lipid metabolism and their correlations through Space 180 CELSS System test of four volunteers were analyzed. Results showed that confined environment affected bone formation indices (BGP, PICP, BAP). Serum insulin level changed significantly during the test, and Lipid metabolism indicators have a downward trend. Correlation analysis showed that BGP was positively correlated with FRUC (r=0.525, p=0.001). There was also a significant positive correlation between BGP, CHOL and LDL (r=0.376, p=0.024; r=0.391, p=0.018). The results showed that the metabolism of bone and glycolipid was changed obviously in this experiment, and there was mutual regulation between them.
-
Key words:
- Hermetic space /
- Bone metabolism /
- Glycolipid metabolism
-
[1] HOLICK M F. Microgravity-induced bone loss——will it limit human space exploration[J]. Lancet, 2000, 355 (9215):1569-1579 [2] LANE H W. Energy requirements for space flight[J]. J. Nutr., 1992, 122(1):13-18 [3] STEIN T P, SCHULTER M D, BODEN G. Development of insulin resistance by astronauts during spaceflight[J]. Aviat., Space, Environ. Med., 1994, 65(12):1091-1096 [4] CREE M G, PADDON-JONES D, NEWCOMER B R, et al. Twenty-eight-day bed rest with hypercortisolemia induces peripheral insulin resistance and increases intramuscular triglycerides[J]. Metab. Clin. Exp., 2010, 59(5):703-710 [5] WIMALAWANSA S M, WIMALAWANSA S J. Simulated weightlessness-induced attenuation of testosterone production may be responsible for bone loss[J]. Endocrine, 1999, 10(3):253-260 [6] WEI J, KARSENTY G. An overview of the metabolic functions of osteocalcin[J]. Rev. Endocr. Metab. Dis., 2015, 16(2):93-98 [7] DUCY P, DESBOIS C, BOYCE B, et al. Increased bone formation in osteocalcin-deficient mice[J]. Nature, 1996, 382(6590):448 [8] LEE N K, SOWA H, HINOI E, et al. Endocrine regulation of energy metabolism by the skeleton[J]. Cell, 2007, 130(3):456-469 [9] OURY F, SUMARA G, SUMARA O, et al. Endocrine regulation of male fertility by the skeleton[J]. Cell, 2011, 144(5):796-809 [10] OURY F, FERRON M, HUIZHEN W, et al. Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis[J]. J. Clin. Investig., 2013, 123(6):2421 [11] ZHOU H, SEIBEL M J. Bone:osteoblasts and global energy metabolism-beyond osteocalcin[J]. Nat. Rev. Rheumatol., 2017, 13(5):261 [12] MERA P, LAUE K, WEI J, et al. Osteocalcin is necessary and sufficient to maintain muscle mass in older mice[J]. Mol. Metab., 2016, 5(10):1042-1047 [13] YANG C, CHEN J, WU F, et al. Effects of 60-day head-down bed rest on osteocalcin, glycolipid metabolism and their association with or without resistance training[J]. Clin. Endocrinol., 2014, 81(5):671-678 [14] KANAS N, SAYLOR S, HARRIS M, et al. High versus low crew member autonomy in space simulation environments[J]. Acta Astronaut., 2013, 67(7/8):731-738 [15] SANDAL G M, LEON G R, PALINKAS L. Human challenges in polar and space environments[J]. Rev. Environ. Sci. Bio/Technol., 2006, 5(2/3):281-296 [16] LEEHR E J, KROHMER K, SCHAG K, et al. Emotion regulation model in binge eating disorder and obesity——a systematic review[J]. Neurosci. Biobehav. Rev., 2015, 1(49):125-134 [17] SCHORR M, THOMAS J J, EDDY K T, et al. Bone density, body composition, and psychopathology of anorexia nervosa spectrum disorders in DSM-IV vs. DSM-5[J]. Int. J. Eat. Disorder., 2017, 50(4):343-351 [18] WEI J, SHIMAZU J, MAKINISTOGLU M P, et al. Glucose uptake and Runx2 synergize to orchestrate osteoblast differentiation and bone formation[J]. Cell, 2015, 161(7):1576-1591 [19] SHIMAZU J, WEI J, KARSENTY G. Smurf1 inhibits osteoblast differentiation, bone formation, and glucose homeostasis through serine 148[J]. Cell Rep., 2016, 15(1):27-35 [20] YADAV V K, RYU J H, SUDA N, et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum[J]. Cell, 2008, 135(5):825-837 [21] TAO K, XIAO D, WENG J, et al. Berberine promotes bone marrow-derived mesenchymal stem cells osteogenic differentiation via canonical Wnt/β-catenin signaling pathway[J]. Toxicol. Lett., 2016, 240(1):68-80 [22] ELEFTERIOU F. Regulation of bone remodeling by the central and peripheral nervous system[J]. Arch. Biochem. Biophys., 2008, 473(2):231-236 [23] NIEDWIEDZKI T, FILIPOWSKA J. Cellular and systemic regulation of bone remodeling:the role of osteocytes and the nervous system[J]. J. Mol. Endocrinol., 2015, 55(2):JME-15-0067 [24] KARSENTY G, FERRON M. The contribution of bone to whole-organism physiology[J]. Nature, 2012, 481(7381):314-320 [25] GARCIA-HERNANDEZ A, ARZATE H, GIL-CHAVARRIA I, et al. High glucose concentrations alter the biomineralization process in human osteoblastic cells[J]. Bone, 2012, 50(1):276-288 [26] WOLF G. Energy regulation by the skeleton[J]. Nutr. Rev., 2008, 66(4):229-233 -
-
计量
- 文章访问数: 988
- HTML全文浏览量: 187
- PDF下载量: 54
-
被引次数:
0(来源:Crossref)
0(来源:其他)