留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太阳高能粒子观测特征经向分布统计

钱天麒 丁留贯 周坤论 王智伟 朱聪

钱天麒, 丁留贯, 周坤论, 王智伟, 朱聪. 太阳高能粒子观测特征经向分布统计[J]. 空间科学学报, 2021, 41(3): 355-367. doi: 10.11728/cjss2021.03.355
引用本文: 钱天麒, 丁留贯, 周坤论, 王智伟, 朱聪. 太阳高能粒子观测特征经向分布统计[J]. 空间科学学报, 2021, 41(3): 355-367. doi: 10.11728/cjss2021.03.355
QIAN Tianqi, DING Liuguan, ZHOU Kunlun, WANG Zhiwei, ZHU Cong. Statistical Research on the Longitudinal Distribution of Detected Properties of Solar Energetic Particles[J]. Chinese Journal of Space Science, 2021, 41(3): 355-367. doi: 10.11728/cjss2021.03.355
Citation: QIAN Tianqi, DING Liuguan, ZHOU Kunlun, WANG Zhiwei, ZHU Cong. Statistical Research on the Longitudinal Distribution of Detected Properties of Solar Energetic Particles[J]. Chinese Journal of Space Science, 2021, 41(3): 355-367. doi: 10.11728/cjss2021.03.355

太阳高能粒子观测特征经向分布统计

doi: 10.11728/cjss2021.03.355 cstr: 32142.14.cjss2021.03.355
基金项目: 

国家自然科学基金天文联合基金项目(U1731105),江苏省基础研究计划面上项目(BK20171456),中国科学院暗物质与空间天文重点实验室开放课题和国家重点研发计划项目(2018YFC1407304,2018YFF01013706)共同资助

详细信息
    作者简介:
    • 丁留贯,E-mail:dlg@nuist.edu.cn
  • 中图分类号: P353

Statistical Research on the Longitudinal Distribution of Detected Properties of Solar Energetic Particles

  • 摘要: 基于多卫星联合观测数据,筛选了2006年12月至2017年10月期间122个太阳高能粒子(SEP)事件及其伴随的日冕物质抛射(CME),分析了SEP事件属性随相对经度的变化、与CME属性之间相关性的经向分布以及与Fe/O比值的关联.研究结果显示:低Fe/O类事件的峰值通量Ip通常更高,伴随CME更大,但通量上升速度较慢,且其Du(持续时间)和Ip与CME速度呈现更强的相关性;SEP特征时间TO(CME爆发至SEP事件爆发)与TR(SEP事件爆发至半峰值)随相对经度增加而增大,DuIp随相对经度增加而减小,通量上升斜率K在±90°范围内自东向西递减;SEP事件属性与伴随CME属性的相关性随相对经度的改变有明显变化,在磁连接好的位置,TO与CME速度等属性呈现负相关,TR与CME速度等属性呈现正相关,DuIp与CME速度之间的相关性更强.研究结果进一步表明,SEP事件观测属性既与CME参数相关,同时又具有很强的经度依赖性,在磁连接越好的位置卫星观测到的SEP事件强度越高,SEP观测参数受CME的影响越大,这对大型SEP事件的预报很有意义.此外,高Fe/O类SEP事件与CME相关性的减弱暗示了耀斑加速、种子粒子源等因素的影响.

     

  • [1] KAHLER S W, REAMES D V, SHEELEY N R. Coronal mass ejections associated with impulsive solar energetic particle events[J]. Astrophys. J., 2001, 562(1):558-565
    [2] CANE H V, MCGUIRE R E, VON ROSENVINGE T T. Two classes of solar energetic particle events associated with impulsive and long-duration soft X-ray flares[J]. Astrophys. J., 1986, 301(1):448-459
    [3] REAMES D V. Particle acceleration at the sun and in the heliosphere[J]. Space Sci. Rev., 1999, 90(3/4):413-491
    [4] CLIVER E W, SVALGAARD L. The 1859 solar-terrestrial disturbance and the current limits of extreme space weather activity[J]. Sol. Phys., 2004, 224(1/2):407-422
    [5] KLEIN K L, KRUCKER S, LOINTIER G, et al. Open magnetic flux tubes in the corona and the transport of solar energetic particles[J]. Astron. Astrophys., 2008, 486(2):589-596
    [6] CANE H V, REAMES D V, VON ROSENVINGE T T. The role of interplanetary shocks in the longitude distribution of solar energetic particles[J]. J. Geophys. Res., 1988, 93(A9):9555-9567
    [7] GOPALSWAMY N. Intensity variation of large solar energetic particle events associated with coronal mass ejections[J]. J. Geophys. Res., 2004, 109(A12):A12105
    [8] DING L G, JIANG Y, ZHAO L L, et al. The “twin-CME” scenario and large solar energetic particle events in solar cycle 23[J]. Astrophys. J., 2013, 763(30):17
    [9] TYLKA A J, COHEN C M S, DIETRICH W F, et al. Shock geometry, seed populations, and the origin of variable elemental composition at high energies in large gradual solar particle events[J]. Astrophys. J., 2005, 625:474-495
    [10] SOKOLOV I V, ROUSSEV I I, FISK L A, et al. Diffusive shock acceleration theory revisited[J]. Astrophys. J. Lett., 2006, 642:81-84
    [11] KAHLER S W. Energetic particle acceleration by coronal mass ejections[J]. Adv. Space. Res., 2003, 32(12):2587-2596
    [12] DING L G, CAO X X, WANG Z W, et al. Large solar energetic particle event that occurred on 2012 March 7 and its VDA analysis[J]. Res. Astron. Astrophys., 2016, 16(8):122
    [13] RUFFOLO D, TOOPRAKAI P, RUJIWARODOM M, et al. Relativistic solar protons on 1989 October 22: injection and transport along both legs of a closed interplanetary magnetic loop[J]. Astrophys. J., 2016, 639(2):1186-1205
    [14] RICHARDSON I G, CANE H V, VON ROSENVINGE T T. Prompt arrival of solar energetic particles from far eastern events: the role of large-scale interplanetary magnetic field structure[J]. J. Geophys. Res., 1991, 96(A5):7853-7860
    [15] LARIO D, RAOUAFI N E, KWON R Y, et al. The solar energetic particle event on 2013 April 11: an investigation of its solar origin and longitudinal spread[J]. Astrophys. J., 2014, 797(8):16
    [16] LARIO D, KWON R-Y, RICHARDSON I G, et al. The solar energetic particle event of 2010 August 14: connectivity with the solar source inferred from multiple spacecraft observations and modeling[J]. Astrophys. J., 2017, 838(1):24
    [17] LARIO D, ARAN A, GOMEZ HERRERO R, et al. Longitudinal and radial dependence of solar energetic particle peak intensities: STEREO, ACE, SOHO, GOES, and MESSENGER observations[J]. Astrophys. J., 2013, 767(41):18
    [18] HE H Q, WAN W. On the east-west longitudinally asymmetric distribution of solar proton events[J]. Mon. Not. R. Astron. Soc., 2016, 2255.DOI: 10.1093/mnras/stw2255
    [19] KAHLER S W. Characteristic times of gradual solar energetic particle events and their dependence on associated coronal mass ejection properties[J]. Astrophys. J., 2005, 628:1014-1022
    [20] JIAN Yi, LAI Min, DING Liuguan. Statistical study on the ascending time of solar energetic particle events (in Chinese)[J]. Chin. J. Space. Sci., 2014, 34(6):785-793(简昳, 赖敏, 丁留贯. 太阳高能粒子事件上升事件统计研究[J]. 空间科学学报, 2014, 34(6):785-793)
    [21] RICHARDSON I G, VON ROSENVINGE T T, CANE H V, et al. >25MeV proton events observed by the high energy telescopes on the STEREO A and B spacecraft and/or at Earth during the first seven years of the STEREO mission[J]. Sol. Phys., 2014, 289(8):3059-3107
    [22] CANE H V, MEWALDT R A, COHEN C M S, et al. Role of flares and shocks in determining solar energetic particle abundances[J]. J. Geophys. Res., 2006, 111(A06S90).DOI: 10.1029/2005JA011071
    [23] DING L G, LI G, LE G M, et al. Seed population in large solar energetic particle events and the twin-CME scenario[J]. Astrophys. J., 2015, 812(2):171
    [24] WANG Zhiwei, DING Liuguan, ZHOU Kunlun, et al. On the relationship between large SEP event and twin-CME with the observations from multiple-vantage spacecraft (in Chinese)[J]. Chin. J. Geophy., 2018, 61(9):3515-3525(王智伟, 丁留贯, 周坤论, 等. 基于多视角观测的SEP事件与twin-CME关系研究[J]. 地球物理学报, 2018, 61(9):3515-3525)
    [25] DING L G, WANG Z W, FENG L, et al. Is the enhancement of type II radio bursts during CME interactions related to the associated solar energetic particle event[J]. Res. Astron. Astrophys., 2019, 19(1):5
    [26] LI C, TANG Y H, DAI Y, et al. The acceleration characteristics of solar energetic particles in the 2000 July 14 event[J]. Astron. Astrophys., 2007, 461(3):1115-1119
    [27] LI C, TANG Y H, DAI Y, et al. Flare magnetic reconnection and relativistic particles in the 2003 October 28 event[J]. Astron. Astrophys., 2007, 472(1):283-286
    [28] ROUILLARD A P, ODSTŘCIL D, SHEELEY N R, et al. Interpreting their properties of solar energetic particle events by using combined imaging and modeling of interplanetary shocks[J]. Astrophys. J., 2011, 735(1):7
    [29] ROUILLARD A P, SHEELEY N R, TYLKA A, et al. The longitudinal properties of a solar energetic particle event investigated using modern solar imaging[J]. Astrophys. J., 2012, 752(1):44
    [30] KAHLER S W, VOURLIDAS A. A comparison of the intensities and energies of gradual solar energetic particle with the dynamical properties of associated coronal mass ejections[J]. Astrophys. J., 2013, 769(2):143
    [31] KAHLER S W, VOURLIDAS A. Do interacting coronal mass ejections play a role in solar energetic particle events[J]. Astrophys. J., 2014, 784(1):47
  • 加载中
计量
  • 文章访问数:  942
  • HTML全文浏览量:  187
  • PDF下载量:  81
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2020-05-19
  • 修回日期:  2021-02-07
  • 刊出日期:  2021-05-15

目录

    /

    返回文章
    返回