留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于神经网络的磁平静期赤道电集流预测

郑志超 张科灯 万欣 何杨帆 虞蕾 孙璐媛 高洁 仲云芳

郑志超, 张科灯, 万欣, 何杨帆, 虞蕾, 孙璐媛, 高洁, 仲云芳. 基于神经网络的磁平静期赤道电集流预测[J]. 空间科学学报, 2021, 41(3): 392-401. doi: 10.11728/cjss2021.03.392
引用本文: 郑志超, 张科灯, 万欣, 何杨帆, 虞蕾, 孙璐媛, 高洁, 仲云芳. 基于神经网络的磁平静期赤道电集流预测[J]. 空间科学学报, 2021, 41(3): 392-401. doi: 10.11728/cjss2021.03.392
ZHENG Zhichao, ZHANG Kedeng, WAN Xin, HE Yangfan, YU Lei, SUN Luyuan, GAO Jie, ZHONG Yunfang. Prediction of Equatorial Electrojet Based on the Neural Network during Quiet Time[J]. Chinese Journal of Space Science, 2021, 41(3): 392-401. doi: 10.11728/cjss2021.03.392
Citation: ZHENG Zhichao, ZHANG Kedeng, WAN Xin, HE Yangfan, YU Lei, SUN Luyuan, GAO Jie, ZHONG Yunfang. Prediction of Equatorial Electrojet Based on the Neural Network during Quiet Time[J]. Chinese Journal of Space Science, 2021, 41(3): 392-401. doi: 10.11728/cjss2021.03.392

基于神经网络的磁平静期赤道电集流预测

doi: 10.11728/cjss2021.03.392 cstr: 32142.14.cjss2021.03.392
基金项目: 

国家自然科学基金项目资助(41974182,41674153,41521062,41431073)

详细信息
    作者简介:
    • 郑志超,E-mail:zhichao.zheng@whu.edu.cn
  • 中图分类号: P352

Prediction of Equatorial Electrojet Based on the Neural Network during Quiet Time

  • 摘要: 利用BP神经网络技术分别对2008年后磁平静期印度扇区、秘鲁扇区以及CHAMP卫星的赤道电集流(EEJ)变化进行预测,其中神经网络训练数据为对应的2000—2007年磁平静期EEJ观测数据,输入参量为天数、地方时、太阳天顶角、太阳活动指数(F10.7)、太阴时以及卫星地理经度,输出参量为EEJ.对EEJ预测结果进行了统计学分析,并且与实际观测结果进行对比.结果表明:BP神经网络对事件中EEJ的变化具有很好的预测能力,预测结果能够反映EEJ的重要分布特征;EEJ预测值与观测值之间具有很好的相关性,其中地磁台站观测值与预测值相关性系数可达85%以上.此外,将BP神经网络模型的预测结果与Yamazaki提出的经验模型结果进行对比,结果显示BP神经网络与其经验模型性能相当.研究结果表明,BP神经网络技术在平静期EEJ变化预测方面性能优异,具有良好的应用前景.

     

  • [1] Cowling T. The electrical conductivity of an ionized gas in the presence of a magnetic field[J]. Terr. Phys., 1933, 38:19-26
    [2] CHAPMAN S. The equatorial electrojet as detected from the abnormal electric current distribution above Huancayo, Peru, and elsewhere[J]. Arch. Meteor. Geophys. Bioklimatol.: Atmos., 1951, 4(1):368-390
    [3] FORBES J M. The equatorial electroje[J]. Rev. Geophys., 1981, 19:469-504
    [4] CAIN J, SWEENEY R. The POGO data[J]. J. Atmos. Terr. Phys., 1973, 35:1231-1247
    [5] LANGEL R A, PURUCKER M, RAJARAM M. The equatorial electrojet and associated currents as seen in Magsat data[J]. J. Atmos. Terr. Phys., 1993, 55(93): 1233-1269
    [6] JADHAV G, RAJARAM M, RAJARAM R. A detailed study of equatorial electrojet phenomenon using Ørsted satellite observations[J]. J. Geophys. Res., 2002, 107(A8):1175
    [7] IVERS D, STENING R, TURNER J, et al. Equatorial electrojet from Ørsted scalar magnetic field observations[J]. J. Geophys. Res., 2003, 108(A2):1061
    [8] XIONG C, LÜHR H, FEJER B G. The response of equatorial electrojet, vertical plasma drift, and thermospheric zonal wind to enhanced solar wind input[J]. J. Geophys. Res. Space Phys., 2016, 121:5653-5663
    [9] ZHENG Z C, WANG H, LEI Y, et al. Temporal and spatial variations of the equatorial electrojet during storm times from CHAMP observations[J]. J. Atmos. Sol.: Terr. Phys., 2018, 179:307-315
    [10] RASTOGI R G, IYER K N. Quiet day variation of geomagnetic H-field at low latitudes[J]. J. Geomagnet. Geoelectr., 1976, 28(6):461-479
    [11] LÜHR H, MAUS S, ROTHER M. Noon-time equatorial electrojet: its spatial features as determined by the CHAMP satellite[J]. J. Geophys. Res., 2004, 109:A01306
    [12] RASTOGI R G, ALEX S, PATIL A. Seasonal variations of geomagnetic D, H and Z fields at low latitudes[J]. J. Geomagn. Geoelectr., 1994, 46:115-126
    [13] YAMAZAKI Y, YUMOTO K, CARDINAL M G, et al. An empirical model of the quiet daily geomagnetic field variation[J]. J. Geophys. Res.: Space Phys., 2011, 116(A10). DOI: 10.1029/2011JA016487
    [14] TARPLEY J D. Seasonal movement of the Sq current foci and related effects in the equatorial electrojet[J]. J. Atmos. Sol. Terr. Phys., 1973, 35:1063-1071
    [15] DOUMOUYA V, COHEN Y, ARORA B R, et al. Local time and longitude dependence of the equatorial electrojet magnetic effects[J]. J. Atmos. Sol.: Terr. Phys., 2003, 65(14/15):1265-1282
    [16] PATRICK Alken, STEFAN Maus. Spatio-temporal characterization of the equatorial electrojet from CHAMP, Ørsted, and SAC-C satellite magnetic measurements[J]. J. Geophys. Res., 2007, 112:A09305
    [17] RASTOGI R G. Longitudinal variation in the equatorial electrojet[J]. J. Atmos. Terr. Phys., 1962, 24:1031-1040
    [18] RASTOGI R G. Equatorial electrojet at a close pair of stations[J]. Curr. Sci., 2006, 91:272-273
    [19] LÜHR H, MANOJ C. The complete spectrum of the equatorial electrojet related to solar tides: CHAMP observations[J]. Annales. Geophys., 2013, 31(8):1315-1331
    [20] ZHOU Y L, LÜHR H, ALKEN P, et al. New perspectives on equatorial electrojet tidal characteristics derived from the Swarm constellation[J]. J. Geophys. Res.: Space Phys., 2016, 121(7):7226-7237
    [21] LÜHR H, ROTHER M, HÄUSLER K, et al. The influence of nonmigrating tides on the longitudinal variation of the equatorial electrojet[J]. J. Geophys. Res., 2008, 113(A8):1086-1091
    [22] ONWUMECHILI C A, EZEMA P O. Latitudinal and vertical parameters of the equatorial electrojet from an autonomous data set[J]. J. Atmos. Terr. Phys., 1992, 54(11/12):1535-1544
    [23] YAMAZAKI Y, STOLLE C, MATZKA J, et al. Quasi-6-day wave modulation of the equatorial electrojet[J]. J. Geophys. Res.: Space Phys., 2018, 123(5):4094-4109
    [24] RASTOGI R G. Geomagnetic storms and electric fields in the equatorial ionosphere[J]. Nature, 1977, 268:422-424
    [25] REIGBER C, LÜHR H, SCHWINTZER P. CHAMP mission status[J]. Adv. Space Res., 2002, 30(2):129-134
    [26] RICHMOND A D. Ionospheric electrodynamics using magnetic apex coordinates[J]. J. Geomag. Geoelectr., 1995, 47:191-212
    [27] SEXTON R S, DORSEY R E, JOHNSON J D. Optimization of neural networks: a comparative analysis of the genetic algorithm and simulated annealing[J]. Eur. J. Oper. Res., 1999, 114(3):589-601
    [28] SUGIURA M, FANSELAU G. Lunar Phase Numbers v and v' for Years 1850 to 2050[R]. Rep. X-612-66, 1966, 401
    [29] YAMAZAKI Y, KOSCH M J. The equatorial electrojet during geomagnetic storms and substorms[J]. J. Geophys. Res.: Space Phys., 2015, 120(3):2276-2287
    [30] RABIU A B, FOLARIN O O, UOZUMI T, et al. Longitudinal variation of equatorial electrojet and the occurrence of its counter electrojet[J]. Ann. Geophys., 2017, 35(3):535-545
    [31] WANG H, RIDLEY A J, LÜHR H. Validation of the space weather modeling framework using observations from CHAMP and DMSP[J]. Space Weather, 2008, 6(3). DOI: 10.1029/2007SW000355
  • 加载中
计量
  • 文章访问数:  939
  • HTML全文浏览量:  221
  • PDF下载量:  62
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2019-11-27
  • 修回日期:  2020-07-01
  • 刊出日期:  2021-05-15

目录

    /

    返回文章
    返回