Interpolation Algorithm of Global Ionospheric Map Product TEC
-
摘要: 由IGS工作组提供的全球电离层地图(GIM)是电离层重要的应用数据.卫星高度计能够提供全球实时的电离层延迟误差校正.利用GIM数据,以Jason-3时空分辨率进行电离层总电子含量(TEC)的时间维度插值和空间维度插值,其中空间维度插值采用了Kriging插值和双线性插值两种方法.针对两种插值方法得到的总电子含量,与平滑处理的Jason-3高度计cycle80双频延迟校正值转化的总电子含量进行对比分析.结果显示:其与Kriging插值的平均偏差为0.94TECU,均方根误差为2.73TECU,相关系数为0.91;与双线性插值的平均偏差为1.43TECU,均方根误差为6.85TECU,相关系数为0.61.这说明Kriging插值方法的精度明显高于双线性插值方法.Abstract: Global Ionospheric Map (GIM) is an important ionospheric data product provided by the IGS working group, which can provide global real-time ionospheric delay error correction for satellite altimeters. In this study, temporal and spatial interpolation of Total Electron Content (TEC) that derived from GIM data products was performed, with the temporal and spatial resolution of Jason-3 altimeter. Two spatial interpolation methods, Kriging interpolation and Bilinear interpolation, were used in this study. The TEC obtained by these interpolation methods is compared and analyzed with the TEC value that converted from the dual-frequency delay correction of the smoothed Jason-3 altimeter cycle80 data. Results show that the mean bias between Kriging interpolation and processed dual-frequency delay correction is 0.94TECU, the root mean square error is 2.73TECU and the correlation coefficient is 0.91. As a contrast, these statistics between Bilinear interpolation and processed dual-frequency delay correction are 1.43TECU, 6.85TECU, and 0.61, respectively. This demonstrates that the accuracy of the Kriging interpolation is significantly higher than that of the Bilinear interpolation.
-
[1] FELTENS J, SCHAER S. IGS products for the ionosphere[C]//Proceedings of the IGS Analysis Center Workshop. Darmstadt: ESA/ESOC, 1998:225-232 [2] CHEN Shangdeng, YUE Dongjie, LI Ya, et al. Establishment of a regional ionosphere model based on spherical harmonics[J]. Eng. Surv. Mapp., 2015, 11:28-32(陈尚登, 岳东杰, 李亚, 等. 基于球谐函数区域电离层模型建立[J]. 测绘工程, 2015, 11:28-32) [3] ROVIRA-GARCIA A, JUAN J M, SANZ J, et al. Accuracy of ionospheric models used in GNSS and SBAS: methodology and analysis[J]. J. Geod., 2016, 90(3):229-240 [4] ZHANG Qian, WANG Jian. VTEC reconstruction of the ionospheric grid with kriging interpolation[J]. IOP Conf. Ser.: Earth Environ. Sci., 2019, 237(6):062001 [5] LI Zishen, WANG Ningbo, LI Min, et al. Evaluation and analysis of the global ionospheric TEC grid accuracy of the international GNSS service organization[J]. J. Geophys., 2017, 60(10):3718-3729(李子申, 王宁波, 李敏, 等. 国际GNSS服务组织全球电离层TEC格网精度评估与分析[J]. 地球物理学报, 2017, 60(10):3718-3729) [6] ZHANG Youguang, JIA Yongjun, FAN Chenqing, et al. HY-2A satellite radar altimeter error correction algorithm and verification[J]. Eng. Sci., 2013, 15(7):53-61(张有广, 贾永君, 范陈清, 等. 海洋二号卫星雷达高度计测高误差校正算法及验证[J]. 中国工程科学, 2013, 15(7):53-61) [7] ZHANG Ting, ZHANG Jie, CUI Tingwei, et al. Analysis of the ionosphere correct model for the satellite altimeter[J]. Remote Sens. Technol. Appli., 2012, 27(4):511-516(张婷, 张杰, 崔廷伟, 等. 卫星高度计电离层校正模型比较分析[J]. 遥感技术与应用, 2012, 2012, 27(4):511-516) [8] JIN Fengqiu, HUANG Zhigang, SHAO Bo. Grid ionospheric delay estimation method based on spatial variability[J]. Telem. Telecontrol, 2010, 31(4):6-10(金凤秋, 黄智刚, 邵搏. 基于空间变异特性的格网电离层延迟估计方法[J]. 遥测遥控, 2010, 31(4):6-10) [9] CUI Shuzhen, ZHOU Jinguo. Accuracy analysis of IGS ionospheric map by kriging interpolation[J]. Global Posit. Syst., 2016, 41(4):43(崔书珍, 周金国. 克里金插值法内插IGS电离层图精度分析[J]. 全球定位系统, 2016, 41(4):43) [10] WANG Jianli, HAN Xiaodong, WANG Jiasheng, et al. Study on the spatial interpolation method of ionosphere modeling in regional grids[J]. Global Posit. Syst., 2015, 40(1):65-68(王建立, 韩晓冬, 王家胜, 等. 区域格网电离层建模空间插值方法研究[J]. 全球定位系统, 2015, 40(1):65-68) [11] XIA Lingjun, GONG Zhiyu, LI Baizhen. Spatio and temporal distribution of atmospheric CH4 in central China based on GOSAT satellite remote sensing[J]. Meteorol. Disaster Reduct. Res., 2018, 42(1):1-8(夏玲君, 巩志宇, 李柏贞. 基于GOSAT卫星遥感的我国中部地区大气CH4时空分布[J]. 气象与减灾研究, 2018, 42(1):1-8) [12] LI M, YUAN Y, WANG N, et al. Statistical comparison of various interpolation algorithms for reconstructing regional grid ionospheric maps over China[J]. J. Atmos. Sol.: Terr. Phys, 2018, 172:129-137 [13] XIONG B, WAN W, YU Y, et al. COSPAR, 2016. Investigation of ionospheric TEC over China based on GNSS data[J]. Adv. Space Res., 2016, 58(6):867-877 [14] MAO Tian, WAN Weixing, SUN Lingfeng. Central and northern China TEC map using the Kriging method[J]. Chin. J. Space Sci., 2007, 27(4):279-285(毛田, 万卫星, 孙凌峰. 用Kriging方法构建中纬度区域电离层TEC图[J]. 空间科学学报, 2007, 2007, 27(4):279-285) [15] TANG Tian, ZHOU Suya, DU Min. Construction of Hunan regional ionospheric TEC map using Pan-Kriging method[J]. Jiangsu Sci. Technol. Inform., 2017, 12:61-62 [16] YUAN Jiangang, LIU Dapeng. Effects of extraction of GPS ionospheric TEC data using ionex file interpolation[J]. Site Invest. Sci. Technol., 2018, 1:9-12(袁建刚, 刘大鹏. 利用ionex文件插值提取GPS电离层TEC数据效果研究[J]. 勘察科学技术, 2018, 1:9-12) [17] HUANG Changjun, CHEN Yuanhong, ZHOU Lv. Effects of different spatial interpolation on InSAR atmospheric delay correction[J]. Beijing Surv. Mapp., 2018, 6:629-632(黄长军, 陈元洪, 周吕. 不同空间插值对InSAR大气延迟改正影响研究[J]. 北京测绘, 2018, 6:629-632) [18] YANG Mingyuan, LIU Haiyan, JI Xiaolin, et al. Spatio-temporal Kriging optimization for sparsely dispersed data sets[J]. J. Geoinform., 2018, 20(4):505-514(杨明远, 刘海砚, 季晓林, 等. 面向稀疏散布数据集的时空Kriging优化[J]. 地球信息科学学报,2018, 20(4):505-514) [19] CHENG L, MA H, YU D, et al. Extended analysis of real-time foF2 mapping in mideastern china based on shortwave signals[J]. Radio Sci., 2017, 52(11-12):1314-1324 [20] WANG Jianping, LIU Ruiyuan, DENG Zhongxin. Autocorrelation analysis for interpolation evaluation of ionospheric TEC[J]. J. Space Sci., 2019, 39(6):738-745(王建平, 刘瑞源, 邓忠新. 自相关分析法用于电离层TEC的内插评估[J]. 空间科学学报, 2019, 39(6):738-745) -
-
计量
- 文章访问数: 1612
- HTML全文浏览量: 232
- PDF下载量: 168
-
被引次数:
0(来源:Crossref)
0(来源:其他)