留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太阳系天体引力对空间引力波探测日心编队构型的影响分析

李卓 郑建华 李明涛 于锡峥 王有亮

李卓, 郑建华, 李明涛, 于锡峥, 王有亮. 太阳系天体引力对空间引力波探测日心编队构型的影响分析[J]. 空间科学学报, 2021, 41(3): 457-466. doi: 10.11728/cjss2021.03.457
引用本文: 李卓, 郑建华, 李明涛, 于锡峥, 王有亮. 太阳系天体引力对空间引力波探测日心编队构型的影响分析[J]. 空间科学学报, 2021, 41(3): 457-466. doi: 10.11728/cjss2021.03.457
LI Zhuo, ZHENG Jianhua, LI Mingtao, YU Xizheng, WANG Youliang. Analysis of Celestial Gravity Influence on Heliocentric Formation Flying of Gravitational Wave Observatory[J]. Journal of Space Science, 2021, 41(3): 457-466. doi: 10.11728/cjss2021.03.457
Citation: LI Zhuo, ZHENG Jianhua, LI Mingtao, YU Xizheng, WANG Youliang. Analysis of Celestial Gravity Influence on Heliocentric Formation Flying of Gravitational Wave Observatory[J]. Journal of Space Science, 2021, 41(3): 457-466. doi: 10.11728/cjss2021.03.457

太阳系天体引力对空间引力波探测日心编队构型的影响分析

doi: 10.11728/cjss2021.03.457
基金项目: 

中国科学院战略性先导科技专项资助(XDA15014901)

详细信息
    作者简介:

    李卓,E-mail:15046084839@163.com

    通讯作者:

    郑建华,E-mail:zhengjianhua@nssc.ac.cn

  • 中图分类号: V412

Analysis of Celestial Gravity Influence on Heliocentric Formation Flying of Gravitational Wave Observatory

  • 摘要: 针对太极空间引力波探测任务,建立了太阳系天体引力摄动对日心编队构型影响的数学模型,利用仿真手段分析了太阳系中行星和月球、矮行星和小行星引力摄动对空间引力波探测日心编队构型的影响,提出了一种综合考虑小行星到卫星轨道距离和星等的二重筛选方法,能够快速估计小行星相对加速度的上界.分析了日心编队构型卫星初始相位角变化对太阳系天体引力摄动的影响.仿真结果表明,在行星和月球中,地球、金星和木星引力对空间引力波探测编队构型影响较大,行星和月球的引力叠加影响达到-2.78×10-11km·-2.矮行星的引力叠加影响不大于1.25×10-17km·-2,小行星引力的叠加影响不大于1.1180×10-15km·-2.另外,编队卫星受到的太阳系天体引力摄动对编队构型卫星初始相位角的变化不敏感.

     

  • [1] HUANG Shuanglin, GONG Xuefei, XU Peng, et al. Gravitational wave detection in space-a new window in astronomy[J]. Sci. Sin.: Phys. Mech. Astron., 2017, 47(1): 010404(黄双林, 龚雪飞, 徐鹏, 等. 空间引力波探测—天文学的一个新窗口[J]. 中国科学: 物理学力学天文学, 2017, 47(1): 010404)
    [2] WANG Zhi, MA Jun, LI Jingqiu. Space-based gravitational wave detection mission: design highlights of LISA system[J]. Chin. Opt., 2015, 8(6):980-987(王智, 马军, 李静秋. 空间引力波探测计划elax--LISA系统设计要点[J]. 中国光学, 2015, 8(6):980-987)
    [3] NI W T. ASTROD-GW: overview and progress[J]. Int. J. Modern Phys. D, 2013, 22:1341004
    [4] SETO N, KAWAMURA S, NAKAMURA T. Possibility of direct measurement of the acceleration of the universe using 0.1Hz band laser interferometer gravitational wave antenna in space[J]. Phys. Rev. Lett., 2001, 87:221103
    [5] BENDER P L. Additional astrophysical objectives for LISA follow-on missions[J]. Class. Quant. Grav., 2004, 21:S1203
    [6] HARRY G M, FRITSCHEL P, SHADDOCK D A, et al. Laser interferometry for the big bang observer[J]. Class. Quant. Grav., 2006, 23(15):C01
    [7] LUO Ziren, BAI Shan, BIAN Xing, et al. Space laser interferometry gravitational wave detection[J]. Adv. Mech., 2013, 43(4):415-447(罗子人, 白姗, 边星, 等. 空间激光干涉引力波探测[J]. 力学进展, 2013, 43(4):415-447)
    [8] LUO J, CHEN L SH, DUAN H Z. TianQin: a space-borne gravitational wave detector[J]. Class. Quant. Grav., 2016, 33(3). DOI: 10.1088/0264-9381/33/3/035010
    [9] HU X C, LI X H, WANG Y F, et al. Fundamentals of the orbit and response for TianQin[J]. Class. Quant. Grav., 2018, 35(9).DOI: 10.1088/1361-6382/aab52f
    [10] XIA Yan. Orbit Design and Optimization for the LISA Gravitational Wave Observatory[D]. Nanjing: Purple Mountain Observatory, Chinese Academy of Science, 2009(夏炎. 引力波探测计划LISA的任务轨道设计与优化[D]. 南京: 中国科学院紫金山天文台, 2009)
    [11] TRICARICO P. Near-earth asteroids detection rate with LISA[J]. Class. Quant. Grav., 2009, 26(8):85003-85010
    [12] TANG Wenlin. Preliminary Study of the Orbit Design of the Chinese Mission to Detect the Gravitational Wave in Space[D]. Beijing: University of Chinese Academy of Sciences, 2018(唐文林. 中国空间引力波探测计划卫星轨道设计的初步研究[D]. 北京: 中国科学院大学, 2014)
    [13] DONGFANG Xing. Introduction of asteroid exploration and development[J]. Space Int., 2017, 7:48-55(东方星. 漫谈小行星及其探测与开发[J]. 国际太空, 2017, 7:48-55)
  • 加载中
计量
  • 文章访问数:  125
  • HTML全文浏览量:  2
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-11
  • 修回日期:  2020-10-30
  • 刊出日期:  2021-05-15

目录

    /

    返回文章
    返回