Simulation of the Middle and Upper Atmospheric Wind Measurement of THz Atmospheric Limb Sounder
-
摘要: 太赫兹大气临边探测仪(TALIS)是中国正在预研的第一台THz频段的临边探测仪,主要用于高精度、高分辨率的大气遥感测量.TALIS的观测目标主要包括大气温度、大气压强、大气成分(例如H2O,O3,HCl,ClO,N2O,HNO3等)的垂直分布以及长期变化趋势.由于TALIS的频段覆盖了许多重要的吸收谱线,其观测数据中包含大气风的多普勒信息,因此可以用于反演中高层风的廓线.本文针对TALIS视线多普勒风的观测进行仿真,利用辐射传输模型(ARTS)评估了TALIS测风的潜力和相应的反演精度.结果表明,TALIS的118GHz谱仪具有较好的测量精度,在70km处的精度为12m·s-1.183GHz,633GHz和658GHz谱仪也有一定的测量信息,反演精度分别为19m·s-1(60km),19m·s-1(50km),16m·s-1(50km).TALIS有一个候选的测风谱仪位于655GHz频段,其在55km处的反演精度为11m·s-1.此外,虽然降低谱分辨率能有效提高系统灵敏度,但并不能提高反演精度,需要通过降低系统噪声来提高测风的精度.Abstract: Middle and upper atmospheric wind is a key parameter in atmospheric science. Ground-based radar, lidar, and interferometer are usually used to measure the atmospheric wind. Up to now, the payload which can measure the atmospheric wind from space is quite scarce. Microwave limb sounding can also measure wind in the middle and upper atmosphere. THz Atmospheric Limb Sounder (TALIS) is the first Chinese microwave limb sounder being developed for atmospheric vertical profile observation. The main targets of TALIS are atmospheric vertical profiles of temperature, pressure and chemical species such as H2O, O3, HCl, ClO, N2O, HNO3. Since TALIS covers many strong lines, the observation data will contain doppler information of atmospheric wind, so it can be used to retrieve the atmospheric wind. In this paper, a simulation is performed to evaluate the precision of wind retrieval by using the Atmospheric Radiative Transfer Simulator (ARTS). The results suggest that 118GHz retrieval has a better precision of 12m·s-1 at 70km. The precision of 183GHz, 633GHz and 658GHz are 19m·s-1 (60km), 19m·s-1 (50km), 16m·s-1 (50km), respectively. 655GHz is a candidate band that has a large potential for wind measurement in the stratosphere and its precision is 11m·s-1 at 55km. The simulation also shows that reducing the spectral resolution to improve the NEDT has almost no contribution to a better retrieval precision. Reducing the system noise temperature is the only way to improve the precision.
-
Key words:
- Limb sounding /
- TALIS /
- Atmospheric radiative transfer /
- Atmospheric wind retrieval
-
[1] WANG Yongmei, FU Liping, DU Shusong, et al. Development for detecting upper atmospheric wind and temperature from satellite[J]. Chin. J. Space Sci., 2009, 29(1):1-5(王咏梅, 付利平, 杜述松, 等. 中高层大气风场和温度场星载探测技术研究进展[J]. 空间科学学报, 2009, 29(1):1-5) [2] WANG Houmao, WANG Yongmei, FU Jianguo, et al. A new ground-based Fabry-Perot interferometer for measurement of the thermospheric wind[J]. Chin. J. Space Sci., 2016, 36(3):352-357(王后茂, 王咏梅, 付建国, 等. 一种用于测量高层大气风场的新型地基Fabry-Perot干涉仪[J]. 空间科学学报, 2016, 36(3):352-357) [3] WANG Houmao, WANG Yongmei, FU Yingjian, et al. Wind retrieval and error analysis of ground-based Fabry-Perot interferometer for the middle and upper atmosphere[J]. Chin. J. Space Sci., 2014, 34(4):415-425(王后茂, 王咏梅, 付建国, 等. 地基Fabry-Perot中高层大气风速反演及误差分析[J]. 空间科学学报, 2014, 34(4):415-425) [4] YUAN Wei, XU Jiyao, MA Ruiping, et al. First observation of mesospheric and thermospheric winds by a Fabry-Perot interferometer in China[J]. Chin. Sci. Bull., 2010, 55(35):4046-4051(袁伟, 徐寄遥, 马瑞平, 等. 我国光学干涉仪对中高层大气风场的首次观测[J]. 科学通报, 2010, 55(35):4046-4051) [5] GRASSL H J, SKINNER W R, HAYS P B, et al. Atmospheric wind measurements with the high-resolution Doppler imager[J]. J. Spacecr. Rockets., 1995, 32(1):169-176 [6] HAYS P B, TEAM H S. Remote sensing of mesospheric winds with the high-resolution doppler imager[J]. Planet. Space Sci., 1992, 40(12):1599-1606 [7] SHEPHERD G G, THUILLIER G, GAULT W A, et al. WINDSⅡ, the wind imaging interferometer on the upper atmosphere research satellite[J]. J. Geophys. Res., 1993, 98(10):10725-10750 [8] ISHⅡ S, BARON P, AOKI M, et al. Feasibility study for future space-borne coherent doppler wind lidar, part 1:instrumental overview for global wind profile observation[J]. J. Meteorol. Soc. Jpn., 2017, 95(5):301-317 [9] BAUMGARTEN G. Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80km[J]. Atmos. Meas. Tech., 2010, 3(6):1509-1518 [10] ORTLAND D A, SKINNER W R, HAYS P B, et al. Measurements of stratospheric winds by the high resolution Doppler imager[J]. J. Geophys. Res., 1996, 101(D6):10351-10363 [11] SHEPHERD G G. Development of wind measurement systems for future space missions[J]. Acta Astronaut., 2015, 115(5):206-217 [12] FU Jia, WANG Zhenzhan. Simulation of microwave and sub-millimeter wave radiation from 1 to 3000GHz of planetary atmosphere[J]. Chin. J. Space Sci., 2017, 37(2):192-201(付佳, 王振占. 行星大气1~3000GHz微波-亚毫米波辐射模拟[J]. 空间科学学报, 2017, 37(2):192-201) [13] WATERS J W, FROIDEVAUX L, HARWOOD R S, et al. The Earth Observing System Microwave Limb Sounder (EOS MLS) on the aura satellite[J]. IEEE T. Geosci. Remote, 2006, 44(5):1075-1092 [14] WU D L, SCHWARTZ M J, WATERS J W, et al. Mesospheric doppler wind measurements from aura Microwave Limb Sounder (MLS)[J]. Adv. Space Res., 2008, 42(7):1246-1252 [15] KIKUCHI K, NISHIBORI T, OCHIAI S, et al. Overview and early results of the superconducting Submillimeter-wave Limb-Emission Sounder (SMILES)[J]. J. Geophys. Res., 2010, 115:D23306 [16] BARON P, MURTAGH D P, URBAN J, et al. Observation of horizontal winds in the middle-atmosphere between 30°S and 55°N during the northern winter 2009-2010[J]. Atmos. Chem. Phys., 2013, 13(12):6049-6064 [17] BARON P, MURTAGH D P, ERIKSSON P, et al. Simulation study for the Stratospheric Inferred Winds (SIW) sub-millimeter limb sounder[J]. Atmos. Meas. Tech., 2018, 11:4545-4566 [18] OCHIAI S, BARON P, NISHIBORI T, et al. SMILES-2 mission for temperature, wind, and composition in the whole atmosphere[J]. Sci. Online Lett. Atmos., 2017, 13(A):13-18 [19] BARON P, OCHIAI S, DUPUY E, et al. Potential for the measurement of MLT wind, temperature, density and geomagnetic field with superconducting Submillimeter-wave Limb-Emission Sounder-2(SMILES-2)[J]. Atmos. Meas. Tech., 2020, 13(1):219-237 [20] WANG Wengyu, WANG Zhenzhan, DUAN Yongqiang. Performance evaluation of THz Atmospheric Limb Sounder (TALIS) of China[J]. Atmos. Meas. Tech., 2020, 13(1):13-38 [21] RODGERS C D. Inverse Methods for Atmospheric Sounding:Theory and Practice[M]. Singapore:World Scientific, 2000 [22] ERIKSSON P, BUEHLER S A, DAVIS C P, et al. ARTS, the atmospheric radiative transfer simulator, version 2[J]. J. Quant. Spectrosc. Ra., 2011, 112:1551-1558 [23] ERIKSSON P, JIMENEZ C, BUEHLER S A. Qpack, a general tool for instrument simulation and retrieval work[J]. J. Quant. Spectrosc. Ra., 2005, 91:47-64 -
-
计量
- 文章访问数: 1044
- HTML全文浏览量: 154
- PDF下载量: 52
-
被引次数:
0(来源:Crossref)
0(来源:其他)