留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹大气临边探测仪遥感中高层大气风仿真

王文煜 王振占 段永强

王文煜, 王振占, 段永强. 太赫兹大气临边探测仪遥感中高层大气风仿真[J]. 空间科学学报, 2021, 41(4): 589-596. doi: 10.11728/cjss2021.04.589
引用本文: 王文煜, 王振占, 段永强. 太赫兹大气临边探测仪遥感中高层大气风仿真[J]. 空间科学学报, 2021, 41(4): 589-596. doi: 10.11728/cjss2021.04.589
WANG Wenyu, WANG Zhenzhan, DUAN Yongqiang. Simulation of the Middle and Upper Atmospheric Wind Measurement of THz Atmospheric Limb Sounder[J]. Chinese Journal of Space Science, 2021, 41(4): 589-596. doi: 10.11728/cjss2021.04.589
Citation: WANG Wenyu, WANG Zhenzhan, DUAN Yongqiang. Simulation of the Middle and Upper Atmospheric Wind Measurement of THz Atmospheric Limb Sounder[J]. Chinese Journal of Space Science, 2021, 41(4): 589-596. doi: 10.11728/cjss2021.04.589

太赫兹大气临边探测仪遥感中高层大气风仿真

doi: 10.11728/cjss2021.04.589 cstr: 32142.14.cjss2021.04.589
基金项目: 

国家自然科学基金项目资助(41771405)

详细信息
    作者简介:
    • 王文煜,E-mail:wangwenyu14@mails.ucas.edu.cn
  • 中图分类号: P414

Simulation of the Middle and Upper Atmospheric Wind Measurement of THz Atmospheric Limb Sounder

  • 摘要: 太赫兹大气临边探测仪(TALIS)是中国正在预研的第一台THz频段的临边探测仪,主要用于高精度、高分辨率的大气遥感测量.TALIS的观测目标主要包括大气温度、大气压强、大气成分(例如H2O,O3,HCl,ClO,N2O,HNO3等)的垂直分布以及长期变化趋势.由于TALIS的频段覆盖了许多重要的吸收谱线,其观测数据中包含大气风的多普勒信息,因此可以用于反演中高层风的廓线.本文针对TALIS视线多普勒风的观测进行仿真,利用辐射传输模型(ARTS)评估了TALIS测风的潜力和相应的反演精度.结果表明,TALIS的118GHz谱仪具有较好的测量精度,在70km处的精度为12m·s-1.183GHz,633GHz和658GHz谱仪也有一定的测量信息,反演精度分别为19m·s-1(60km),19m·s-1(50km),16m·s-1(50km).TALIS有一个候选的测风谱仪位于655GHz频段,其在55km处的反演精度为11m·s-1.此外,虽然降低谱分辨率能有效提高系统灵敏度,但并不能提高反演精度,需要通过降低系统噪声来提高测风的精度.

     

  • [1] WANG Yongmei, FU Liping, DU Shusong, et al. Development for detecting upper atmospheric wind and temperature from satellite[J]. Chin. J. Space Sci., 2009, 29(1):1-5(王咏梅, 付利平, 杜述松, 等. 中高层大气风场和温度场星载探测技术研究进展[J]. 空间科学学报, 2009, 29(1):1-5)
    [2] WANG Houmao, WANG Yongmei, FU Jianguo, et al. A new ground-based Fabry-Perot interferometer for measurement of the thermospheric wind[J]. Chin. J. Space Sci., 2016, 36(3):352-357(王后茂, 王咏梅, 付建国, 等. 一种用于测量高层大气风场的新型地基Fabry-Perot干涉仪[J]. 空间科学学报, 2016, 36(3):352-357)
    [3] WANG Houmao, WANG Yongmei, FU Yingjian, et al. Wind retrieval and error analysis of ground-based Fabry-Perot interferometer for the middle and upper atmosphere[J]. Chin. J. Space Sci., 2014, 34(4):415-425(王后茂, 王咏梅, 付建国, 等. 地基Fabry-Perot中高层大气风速反演及误差分析[J]. 空间科学学报, 2014, 34(4):415-425)
    [4] YUAN Wei, XU Jiyao, MA Ruiping, et al. First observation of mesospheric and thermospheric winds by a Fabry-Perot interferometer in China[J]. Chin. Sci. Bull., 2010, 55(35):4046-4051(袁伟, 徐寄遥, 马瑞平, 等. 我国光学干涉仪对中高层大气风场的首次观测[J]. 科学通报, 2010, 55(35):4046-4051)
    [5] GRASSL H J, SKINNER W R, HAYS P B, et al. Atmospheric wind measurements with the high-resolution Doppler imager[J]. J. Spacecr. Rockets., 1995, 32(1):169-176
    [6] HAYS P B, TEAM H S. Remote sensing of mesospheric winds with the high-resolution doppler imager[J]. Planet. Space Sci., 1992, 40(12):1599-1606
    [7] SHEPHERD G G, THUILLIER G, GAULT W A, et al. WINDSⅡ, the wind imaging interferometer on the upper atmosphere research satellite[J]. J. Geophys. Res., 1993, 98(10):10725-10750
    [8] ISHⅡ S, BARON P, AOKI M, et al. Feasibility study for future space-borne coherent doppler wind lidar, part 1:instrumental overview for global wind profile observation[J]. J. Meteorol. Soc. Jpn., 2017, 95(5):301-317
    [9] BAUMGARTEN G. Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80km[J]. Atmos. Meas. Tech., 2010, 3(6):1509-1518
    [10] ORTLAND D A, SKINNER W R, HAYS P B, et al. Measurements of stratospheric winds by the high resolution Doppler imager[J]. J. Geophys. Res., 1996, 101(D6):10351-10363
    [11] SHEPHERD G G. Development of wind measurement systems for future space missions[J]. Acta Astronaut., 2015, 115(5):206-217
    [12] FU Jia, WANG Zhenzhan. Simulation of microwave and sub-millimeter wave radiation from 1 to 3000GHz of planetary atmosphere[J]. Chin. J. Space Sci., 2017, 37(2):192-201(付佳, 王振占. 行星大气1~3000GHz微波-亚毫米波辐射模拟[J]. 空间科学学报, 2017, 37(2):192-201)
    [13] WATERS J W, FROIDEVAUX L, HARWOOD R S, et al. The Earth Observing System Microwave Limb Sounder (EOS MLS) on the aura satellite[J]. IEEE T. Geosci. Remote, 2006, 44(5):1075-1092
    [14] WU D L, SCHWARTZ M J, WATERS J W, et al. Mesospheric doppler wind measurements from aura Microwave Limb Sounder (MLS)[J]. Adv. Space Res., 2008, 42(7):1246-1252
    [15] KIKUCHI K, NISHIBORI T, OCHIAI S, et al. Overview and early results of the superconducting Submillimeter-wave Limb-Emission Sounder (SMILES)[J]. J. Geophys. Res., 2010, 115:D23306
    [16] BARON P, MURTAGH D P, URBAN J, et al. Observation of horizontal winds in the middle-atmosphere between 30°S and 55°N during the northern winter 2009-2010[J]. Atmos. Chem. Phys., 2013, 13(12):6049-6064
    [17] BARON P, MURTAGH D P, ERIKSSON P, et al. Simulation study for the Stratospheric Inferred Winds (SIW) sub-millimeter limb sounder[J]. Atmos. Meas. Tech., 2018, 11:4545-4566
    [18] OCHIAI S, BARON P, NISHIBORI T, et al. SMILES-2 mission for temperature, wind, and composition in the whole atmosphere[J]. Sci. Online Lett. Atmos., 2017, 13(A):13-18
    [19] BARON P, OCHIAI S, DUPUY E, et al. Potential for the measurement of MLT wind, temperature, density and geomagnetic field with superconducting Submillimeter-wave Limb-Emission Sounder-2(SMILES-2)[J]. Atmos. Meas. Tech., 2020, 13(1):219-237
    [20] WANG Wengyu, WANG Zhenzhan, DUAN Yongqiang. Performance evaluation of THz Atmospheric Limb Sounder (TALIS) of China[J]. Atmos. Meas. Tech., 2020, 13(1):13-38
    [21] RODGERS C D. Inverse Methods for Atmospheric Sounding:Theory and Practice[M]. Singapore:World Scientific, 2000
    [22] ERIKSSON P, BUEHLER S A, DAVIS C P, et al. ARTS, the atmospheric radiative transfer simulator, version 2[J]. J. Quant. Spectrosc. Ra., 2011, 112:1551-1558
    [23] ERIKSSON P, JIMENEZ C, BUEHLER S A. Qpack, a general tool for instrument simulation and retrieval work[J]. J. Quant. Spectrosc. Ra., 2005, 91:47-64
  • 加载中
计量
  • 文章访问数:  1044
  • HTML全文浏览量:  154
  • PDF下载量:  52
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2020-01-09
  • 修回日期:  2020-09-27
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回