留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于激光雷达夜间观测提取重力波方法的定量比较

郜颖哲 刘晓 徐寄遥

郜颖哲, 刘晓, 徐寄遥. 基于激光雷达夜间观测提取重力波方法的定量比较[J]. 空间科学学报, 2021, 41(4): 597-608. doi: 10.11728/cjss2021.04.597
引用本文: 郜颖哲, 刘晓, 徐寄遥. 基于激光雷达夜间观测提取重力波方法的定量比较[J]. 空间科学学报, 2021, 41(4): 597-608. doi: 10.11728/cjss2021.04.597
GAO Yingzhe, LIU Xiao, XU Jiyao. Quantitative Estimations on the Gravity Wave Extraction Methods from Night-time Lidar Observation[J]. Chinese Journal of Space Science, 2021, 41(4): 597-608. doi: 10.11728/cjss2021.04.597
Citation: GAO Yingzhe, LIU Xiao, XU Jiyao. Quantitative Estimations on the Gravity Wave Extraction Methods from Night-time Lidar Observation[J]. Chinese Journal of Space Science, 2021, 41(4): 597-608. doi: 10.11728/cjss2021.04.597

基于激光雷达夜间观测提取重力波方法的定量比较

doi: 10.11728/cjss2021.04.597
基金项目: 

国家自然科学基金项目资助(41831073,41874182,41574143)

详细信息
    作者简介:

    郜颖哲,E-mail:liuxiao@htu.edu.cn

  • 中图分类号: P351

Quantitative Estimations on the Gravity Wave Extraction Methods from Night-time Lidar Observation

  • 摘要: 以激光雷达夜间观测的温度数据的时空范围和时空分辨率作为参考,构造具有已知背景温度(由稳态背景、行星波和潮汐波组成)和重力波频谱分布的合成温度数据,针对合成温度数据,分别采用已有的夜间平均方法和时间滑动平均方法提取重力波.在此基础上,提出了用谐波函数近似表示背景大气变化的谐波拟合方法提取重力波.通过比较提取出的重力波与事先给定的重力波得到谱响应,利用谱响应定量分析各方法能够有效提取重力波的周期范围.研究结果表明:对背景温度成分敏感的夜间平均方法提取的重力波振幅易被严重高估;对半日潮汐比较敏感的时间滑动平均方法通常可以提取周期小于1.15倍窗口宽度的重力波;对背景温度成分不敏感的谐波拟合方法可用来提取周期小于0.4倍夜间时间长度的重力波.将各方法应用于Na激光雷达夜间观测的温度数据,从中提取重力波,结果表明时间滑动平均方法和谐波拟合方法可以得到较好的结果.

     

  • [1] FORBES J M. Tidal and Planetary Waves, in the Upper Mesosphere and Lower Thermosphere:A Review of Experiment and Theory[M]. Washington:American Geophysical Union, 1995:67-87
    [2] FRITTS D C, ALEXANDER M J. Gravity wave dynamics and effects in the middle atmosphere[J]. Rev. Geophys., 2003, 41(1):1003
    [3] LIU M H, XU J Y, LIU H L, et al. Possible modulation of migrating diurnal tide by latitudinal gradient of zonal wind observed by SABER/TIMED[J]. Sci. China Earth Sci., 2016, 59(2):408-417
    [4] LIU M H, XU J Y, YUE J, et al. Global structure and seasonal variations of the migrating 6-h tide observed by SABER/TIMED[J]. Sci. China Earth Sci., 2015, 58(7):1216-1227
    [5] HOLTON J R. The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere[J]. J. Atmos. Sci., 1982, 39(4):791-799
    [6] MCLANDRESS C. On the importance of gravity waves in the middle atmosphere and their parameterization in general circulation models[J]. J. Atmos. Sol. Terr. Phys., 1998, 60(14):1357-1383
    [7] WAN W X, XU J Y. Recent investigation on the coupling between the ionosphere and upper atmosphere[J]. Sci. China Earth Sci., 2014, 57(9):1995-2012
    [8] GONG S H, YANG G T, CHENG X W, et al. Lidar observation campaigns on diurnal variations of the sodium layer in Beijing and Wuhan, China[J]. Sci. China Earth Sci., 2015, 58(8):1377-1386
    [9] LIU X, XU J Y. Daytime lidar measurements of the sodium layer in China[J]. Sci. China Earth Sci., 2016, 59(8):1707-1708
    [10] WILSON R, CHANIN M L, HAUCHECORNE A. Gravity waves in the middle atmosphere observed by Rayleigh lidar:1. case studies[J]. J. Geophys. Res., 1991, 96(D3):5153-5167
    [11] CHEN W N, TSAO C C, NEE J B. Rayleigh lidar temperature measurements in the upper troposphere and lower stratosphere[J]. J. Atmos. Sol. Terr. Phys., 2004, 66(1):39-49
    [12] YANG G, CLEMESHA B, BATISTA P, et al. Gravity wave parameters and their seasonal variations derived from Na lidar observations at 23°S[J]. J. Geophys. Res., 2006, 111(D21):D21107
    [13] KAIFLER B, LÜBKEN F J, HÖFFNER J, et al. Lidar observations of gravity wave activity in the middle atmosphere over Davis (69°S, 78°E), Antarctica[J]. J. Geophys. Res. Atmos., 2015, 120(10):4506-4521
    [14] ZHAO J, CHU X, CHEN C, et al. Lidar observations of stratospheric gravity waves from 2011 to 2015 at McMurdo (77.84°S, 166.69°E), Antarctica:1. vertical wavelengths, periods, and frequency and vertical wave number spectra[J]. J. Geophys. Res. Atmos., 2017, 122(10):5041-5062
    [15] YUE X, FRIEDMAN J S, ZHOU Q, et al. Long-term lidar observations of the gravity wave activity near the mesopause at Arecibo[J]. Atmos. Chem. Phys., 2019, 19(5):3207-3221
    [16] GONG S, YANG G, DOU X, et al. Statistical study of atmospheric gravity waves in the mesopause region observed by a lidar chain in eastern China[J]. J. Geophys. Res. Atmos., 2015, 120(15):7619-7634
    [17] BAUMGARTEN G, FIEDLER J, HILDEBRAND J, et al. Inertia gravity wave in the stratosphere and mesosphere observed by Doppler wind and temperature lidar[J]. Geophys. Res. Lett., 2015, 42(24):10929-10936
    [18] LI T, SHE C Y, LIU H L, et al. Sodium lidar-observed strong inertia-gravity wave activities in the mesopause region over Fort Collins, Colorado (41°N, 105°W)[J]. J. Geophys. Res., 2007, 112(D22):D22104
    [19] CAI X, YUAN T, ZHAO Y, et al. A coordinated investigation of the gravity wave breaking and the associated dynamical instability by a Na lidar and an Advanced Mesosphere Temperature Mapper over Logan, UT (41.7°N,111.8°W)[J]. J. Geophys. Res. Space Phys., 2014, 119(8):6852-6864
    [20] YUAN T, PAUTET P D, ZHAO Y, et al. Coordinated investigation of midlatitude upper mesospheric temperature inversion layers and the associated gravity wave forcing by Na lidar and Advanced Mesospheric Temperature Mapper in Logan, Utah[J]. J. Geophys. Res. Atmos., 2014, 119(7):3756-3769
    [21] CAI X, YUAN T, LIU H L. Large-scale gravity wave perturbations in the mesopause region above Northern Hemisphere midlatitudes during autumnal equinox:a joint study by the USU Na lidar and Whole Atmosphere Community Climate Model[J]. Ann. Geophys., 2017, 35(2):181-188
    [22] CHEN C, CHU X, MCDONALD A J, et al. Inertia-gravity waves in Antarctica:a case study using simultaneous lidar and radar measurements at McMurdo/Scott Base (77.8°S, 166.7°E)[J]. J. Geophys. Res. Atmos., 2013, 118(7):2794-2808
    [23] EHARD B, KAIFLER B, KAIFLER N, et al. Evaluation of methods for gravity wave extraction from middle-atmospheric lidar temperature measurements[J]. Atmos. Meas. Tech., 2015, 8(11):4645-4655
    [24] RAUTHE M, GERDING M, LÜBKEN F J. Seasonal changes in gravity wave activity measured by lidars at mid-latitudes[J]. Atmos. Chem. Phys., 2008, 8(22):6775-6787
    [25] EHARD B, ACHTERT P, GUMBEL J. Long-term lidar observations of wintertime gravity wave activity over northern Sweden[J]. Ann. Geophys., 2014, 32(11):1395-1405
    [26] GONG S, YANG G, XU J, et al. Gravity wave propagation from the stratosphere into the mesosphere studied with Lidar, Meteor Radar, and TIMED/SABER[J]. Atmosphere, 2019, 10(2):81
    [27] WHITEWAY J A, CARSWELL A I. Lidar observations of gravity wave activity in the upper stratosphere over Toronto[J]. J. Geophys. Res., 1995, 100(D7):14113-14124
    [28] CHANE-MING F, MOLINARO F, LEVEAU J, et al. Analysis of gravity waves in the tropical middle atmosphere over La Reunion Island (21°S, 55°E) with lidar using wavelet techniques[J]. Ann. Geophys., 2000, 18(4):485-498
    [29] DUCK T J, WHITEWAY J A, CARSWELL A I. The gravity wave-Arctic stratospheric vortex interaction[J]. J. Atmos. Sci., 2001, 58(23):3581-3596
    [30] PICONE J M, HEDIN A E, DROB D P, et al. NRLMSISE-00 empirical model of the atmosphere:statistical comparisons and scientific issues[J]. J. Geophys. Res., 2002, 107(A12):1468
    [31] ZHOU Q H, SULZER M P, TEPLY C A. An analysis of tidal and planetary waves in the neutral winds and temperature observed at low-latitude E region heights[J]. J. Geophys. Res., 1997, 102(A6):11491-11505
    [32] GARCIA R R, LIEBERMANR, RUSSELLⅢ J M, et al. Large-scale waves in the mesosphere and lower thermosphere observed by SABER[J]. J. Atmos. Sci., 2005, 62(12):4384-4399
    [33] LU X, CHU X, CHEN C, et al. First observations of short-period eastward propagating planetary waves from the stratosphere to the lower thermosphere (110km) in winter Antarctica[J]. Geophys. Res. Lett., 2017, 44(20):10744-10753
    [34] SHE C Y, CHEN S, WILLIAMS B P, et al. Tides in the mesopause region over Fort Collins, Colorado (41°N, 105°W) based on lidar temperature observations covering full diurnal cycles[J]. J. Geophys. Res., 2002, 107(D18):4350
    [35] YUAN T, SHE C Y, HAGAN M E, et al. Seasonal variation of diurnal perturbations in mesopause region temperature, zonal, and meridional winds above Fort Collins, Colorado (40.6°N, 105°W)[J]. J. Geophys. Res. Atmos., 2006, 111(D6):D06103
    [36] YUAN T, SHE C Y, KRUEGER D, et al. A collaborative study on temperature diurnal tide in the midlatitude mesopause region (41°N, 105°W) with Na lidar and TIMED/SABER observations[J]. J. Atmos. Sol. Terr. Phys., 2010, 72(5-6):541-549
    [37] WILLIAMS B P, SHE C Y, ROBLE R G. Seasonal climatology of the nighttime tidal perturbation of temperature in the midlatitude mesopause region[J]. Geophys. Res. Lett., 1998, 25(17):3301-3304
    [38] YUAN T, SCHMIDT H, SHE C Y, et al. Seasonal variations of semidiurnal tidal perturbations in mesopause region temperature and zonal and meridional winds above Fort Collins, Colorado (40.6°N, 105.1°W)[J]. J. Geophys. Res., 2008, 113(D20):D20103
    [39] LI T, SHE C Y, LIU H L, et al. Evidence of a gravity wave breaking event and the estimation of the wave characteristics from sodium lidar observation over Fort Collins, CO (41°N, 105°W)[J]. Geophys. Res. Lett., 2007, 34(5):L05815
    [40] LU X, LIU A Z, SWENSON G R, et al. Gravity wave propagation and dissipation from the stratosphere to the lower thermosphere[J]. J. Geophys. Res., 2009, 114(D11):D11101
    [41] LIU X, YUE J, XU J, et al. Gravity wave variations in the polar stratosphere and mesosphere from SOFIE/AIM temperature observations[J]. J. Geophys. Res. Atmos., 2014, 119(12):7368-7381
    [42] CHU X, ZHAO J, LU X, et al. Lidar observations of stratospheric gravity waves from 2011 to 2015 at McMurdo (77.84°S, 166.69°E), Antarctica:2. potential energy densities, lognormal distributions, and seasonal variations[J]. J. Geophys. Res. Atmos., 2018, 123(15):7910-7934
    [43] SHE C Y, SHERMAN J, YUAN T, et al. The first 80-hour continuous lidar campaign for simultaneous observation of mesopause region temperature and wind[J]. Geophys. Res. Lett., 2003, 30(6):1319
  • 加载中
计量
  • 文章访问数:  475
  • HTML全文浏览量:  74
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-13
  • 修回日期:  2020-03-17
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回