[1] |
FORBES J M. Tidal and Planetary Waves, in the Upper Mesosphere and Lower Thermosphere:A Review of Experiment and Theory[M]. Washington:American Geophysical Union, 1995:67-87
|
[2] |
FRITTS D C, ALEXANDER M J. Gravity wave dynamics and effects in the middle atmosphere[J]. Rev. Geophys., 2003, 41(1):1003
|
[3] |
LIU M H, XU J Y, LIU H L, et al. Possible modulation of migrating diurnal tide by latitudinal gradient of zonal wind observed by SABER/TIMED[J]. Sci. China Earth Sci., 2016, 59(2):408-417
|
[4] |
LIU M H, XU J Y, YUE J, et al. Global structure and seasonal variations of the migrating 6-h tide observed by SABER/TIMED[J]. Sci. China Earth Sci., 2015, 58(7):1216-1227
|
[5] |
HOLTON J R. The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere[J]. J. Atmos. Sci., 1982, 39(4):791-799
|
[6] |
MCLANDRESS C. On the importance of gravity waves in the middle atmosphere and their parameterization in general circulation models[J]. J. Atmos. Sol. Terr. Phys., 1998, 60(14):1357-1383
|
[7] |
WAN W X, XU J Y. Recent investigation on the coupling between the ionosphere and upper atmosphere[J]. Sci. China Earth Sci., 2014, 57(9):1995-2012
|
[8] |
GONG S H, YANG G T, CHENG X W, et al. Lidar observation campaigns on diurnal variations of the sodium layer in Beijing and Wuhan, China[J]. Sci. China Earth Sci., 2015, 58(8):1377-1386
|
[9] |
LIU X, XU J Y. Daytime lidar measurements of the sodium layer in China[J]. Sci. China Earth Sci., 2016, 59(8):1707-1708
|
[10] |
WILSON R, CHANIN M L, HAUCHECORNE A. Gravity waves in the middle atmosphere observed by Rayleigh lidar:1. case studies[J]. J. Geophys. Res., 1991, 96(D3):5153-5167
|
[11] |
CHEN W N, TSAO C C, NEE J B. Rayleigh lidar temperature measurements in the upper troposphere and lower stratosphere[J]. J. Atmos. Sol. Terr. Phys., 2004, 66(1):39-49
|
[12] |
YANG G, CLEMESHA B, BATISTA P, et al. Gravity wave parameters and their seasonal variations derived from Na lidar observations at 23°S[J]. J. Geophys. Res., 2006, 111(D21):D21107
|
[13] |
KAIFLER B, LÜBKEN F J, HÖFFNER J, et al. Lidar observations of gravity wave activity in the middle atmosphere over Davis (69°S, 78°E), Antarctica[J]. J. Geophys. Res. Atmos., 2015, 120(10):4506-4521
|
[14] |
ZHAO J, CHU X, CHEN C, et al. Lidar observations of stratospheric gravity waves from 2011 to 2015 at McMurdo (77.84°S, 166.69°E), Antarctica:1. vertical wavelengths, periods, and frequency and vertical wave number spectra[J]. J. Geophys. Res. Atmos., 2017, 122(10):5041-5062
|
[15] |
YUE X, FRIEDMAN J S, ZHOU Q, et al. Long-term lidar observations of the gravity wave activity near the mesopause at Arecibo[J]. Atmos. Chem. Phys., 2019, 19(5):3207-3221
|
[16] |
GONG S, YANG G, DOU X, et al. Statistical study of atmospheric gravity waves in the mesopause region observed by a lidar chain in eastern China[J]. J. Geophys. Res. Atmos., 2015, 120(15):7619-7634
|
[17] |
BAUMGARTEN G, FIEDLER J, HILDEBRAND J, et al. Inertia gravity wave in the stratosphere and mesosphere observed by Doppler wind and temperature lidar[J]. Geophys. Res. Lett., 2015, 42(24):10929-10936
|
[18] |
LI T, SHE C Y, LIU H L, et al. Sodium lidar-observed strong inertia-gravity wave activities in the mesopause region over Fort Collins, Colorado (41°N, 105°W)[J]. J. Geophys. Res., 2007, 112(D22):D22104
|
[19] |
CAI X, YUAN T, ZHAO Y, et al. A coordinated investigation of the gravity wave breaking and the associated dynamical instability by a Na lidar and an Advanced Mesosphere Temperature Mapper over Logan, UT (41.7°N,111.8°W)[J]. J. Geophys. Res. Space Phys., 2014, 119(8):6852-6864
|
[20] |
YUAN T, PAUTET P D, ZHAO Y, et al. Coordinated investigation of midlatitude upper mesospheric temperature inversion layers and the associated gravity wave forcing by Na lidar and Advanced Mesospheric Temperature Mapper in Logan, Utah[J]. J. Geophys. Res. Atmos., 2014, 119(7):3756-3769
|
[21] |
CAI X, YUAN T, LIU H L. Large-scale gravity wave perturbations in the mesopause region above Northern Hemisphere midlatitudes during autumnal equinox:a joint study by the USU Na lidar and Whole Atmosphere Community Climate Model[J]. Ann. Geophys., 2017, 35(2):181-188
|
[22] |
CHEN C, CHU X, MCDONALD A J, et al. Inertia-gravity waves in Antarctica:a case study using simultaneous lidar and radar measurements at McMurdo/Scott Base (77.8°S, 166.7°E)[J]. J. Geophys. Res. Atmos., 2013, 118(7):2794-2808
|
[23] |
EHARD B, KAIFLER B, KAIFLER N, et al. Evaluation of methods for gravity wave extraction from middle-atmospheric lidar temperature measurements[J]. Atmos. Meas. Tech., 2015, 8(11):4645-4655
|
[24] |
RAUTHE M, GERDING M, LÜBKEN F J. Seasonal changes in gravity wave activity measured by lidars at mid-latitudes[J]. Atmos. Chem. Phys., 2008, 8(22):6775-6787
|
[25] |
EHARD B, ACHTERT P, GUMBEL J. Long-term lidar observations of wintertime gravity wave activity over northern Sweden[J]. Ann. Geophys., 2014, 32(11):1395-1405
|
[26] |
GONG S, YANG G, XU J, et al. Gravity wave propagation from the stratosphere into the mesosphere studied with Lidar, Meteor Radar, and TIMED/SABER[J]. Atmosphere, 2019, 10(2):81
|
[27] |
WHITEWAY J A, CARSWELL A I. Lidar observations of gravity wave activity in the upper stratosphere over Toronto[J]. J. Geophys. Res., 1995, 100(D7):14113-14124
|
[28] |
CHANE-MING F, MOLINARO F, LEVEAU J, et al. Analysis of gravity waves in the tropical middle atmosphere over La Reunion Island (21°S, 55°E) with lidar using wavelet techniques[J]. Ann. Geophys., 2000, 18(4):485-498
|
[29] |
DUCK T J, WHITEWAY J A, CARSWELL A I. The gravity wave-Arctic stratospheric vortex interaction[J]. J. Atmos. Sci., 2001, 58(23):3581-3596
|
[30] |
PICONE J M, HEDIN A E, DROB D P, et al. NRLMSISE-00 empirical model of the atmosphere:statistical comparisons and scientific issues[J]. J. Geophys. Res., 2002, 107(A12):1468
|
[31] |
ZHOU Q H, SULZER M P, TEPLY C A. An analysis of tidal and planetary waves in the neutral winds and temperature observed at low-latitude E region heights[J]. J. Geophys. Res., 1997, 102(A6):11491-11505
|
[32] |
GARCIA R R, LIEBERMANR, RUSSELLⅢ J M, et al. Large-scale waves in the mesosphere and lower thermosphere observed by SABER[J]. J. Atmos. Sci., 2005, 62(12):4384-4399
|
[33] |
LU X, CHU X, CHEN C, et al. First observations of short-period eastward propagating planetary waves from the stratosphere to the lower thermosphere (110km) in winter Antarctica[J]. Geophys. Res. Lett., 2017, 44(20):10744-10753
|
[34] |
SHE C Y, CHEN S, WILLIAMS B P, et al. Tides in the mesopause region over Fort Collins, Colorado (41°N, 105°W) based on lidar temperature observations covering full diurnal cycles[J]. J. Geophys. Res., 2002, 107(D18):4350
|
[35] |
YUAN T, SHE C Y, HAGAN M E, et al. Seasonal variation of diurnal perturbations in mesopause region temperature, zonal, and meridional winds above Fort Collins, Colorado (40.6°N, 105°W)[J]. J. Geophys. Res. Atmos., 2006, 111(D6):D06103
|
[36] |
YUAN T, SHE C Y, KRUEGER D, et al. A collaborative study on temperature diurnal tide in the midlatitude mesopause region (41°N, 105°W) with Na lidar and TIMED/SABER observations[J]. J. Atmos. Sol. Terr. Phys., 2010, 72(5-6):541-549
|
[37] |
WILLIAMS B P, SHE C Y, ROBLE R G. Seasonal climatology of the nighttime tidal perturbation of temperature in the midlatitude mesopause region[J]. Geophys. Res. Lett., 1998, 25(17):3301-3304
|
[38] |
YUAN T, SCHMIDT H, SHE C Y, et al. Seasonal variations of semidiurnal tidal perturbations in mesopause region temperature and zonal and meridional winds above Fort Collins, Colorado (40.6°N, 105.1°W)[J]. J. Geophys. Res., 2008, 113(D20):D20103
|
[39] |
LI T, SHE C Y, LIU H L, et al. Evidence of a gravity wave breaking event and the estimation of the wave characteristics from sodium lidar observation over Fort Collins, CO (41°N, 105°W)[J]. Geophys. Res. Lett., 2007, 34(5):L05815
|
[40] |
LU X, LIU A Z, SWENSON G R, et al. Gravity wave propagation and dissipation from the stratosphere to the lower thermosphere[J]. J. Geophys. Res., 2009, 114(D11):D11101
|
[41] |
LIU X, YUE J, XU J, et al. Gravity wave variations in the polar stratosphere and mesosphere from SOFIE/AIM temperature observations[J]. J. Geophys. Res. Atmos., 2014, 119(12):7368-7381
|
[42] |
CHU X, ZHAO J, LU X, et al. Lidar observations of stratospheric gravity waves from 2011 to 2015 at McMurdo (77.84°S, 166.69°E), Antarctica:2. potential energy densities, lognormal distributions, and seasonal variations[J]. J. Geophys. Res. Atmos., 2018, 123(15):7910-7934
|
[43] |
SHE C Y, SHERMAN J, YUAN T, et al. The first 80-hour continuous lidar campaign for simultaneous observation of mesopause region temperature and wind[J]. Geophys. Res. Lett., 2003, 30(6):1319
|