Characteristics of the Atmospheric Electric Field Distribution with Height in Qaidam Basin of Qinghai Province
-
摘要: 大气电场强度是大气电学的重要参数.大气电场的准确测量及其时空特性对研究空间天气活动、气象活动以及大型地质活动具有重要意义.2019年8月26日和28日,中国科学院鸿鹄专项团队在青海省海西蒙古自治州大柴旦镇地区放飞搭载模式电场仪的探空气球,测量了不同高度的大气电场强度.利用互相关函数法和主成分分析法研究了此次气球实验得到的电场数据.结果表明,尽管通常情况下决定大气垂直电场大小的主要因素是高度,但是该地区风场对大气电场强度的影响也比较显著.晴天大气条件下,有无薄云的存在对大气电场测量存在一定影响,有云条件下,风速会通过影响云的形成间接影响到大气电场.此外,柴达木盆地存在一个易受下垫面影响的大气电场边界层,分析表明这个边界层厚度在3km以上.对边界层大气电场变化以及晴天无云时3600m以上的大气电场分布进行了分析和拟合.Abstract: The intensity of atmospheric electric field is an important parameter of atmospheric electricity. Accurate measurements of atmospheric electric field and the analysis of its spatial and temporal characteristics are of great significance to study space weather activities, meteorological activities and geological activities. In the morning of August 26 and 28, the ballooning experiments with atmospheric electric field detector were done by Honghu Project of Chinese Academy of Science in Da Qaidam region of Qaidam Basin, Qinghai Province. By using cross-correlation function method and Principal Component Analysis (PCA) to analyze the data from the mill electric field instruments aboard the balloons respectively, it is demonstrated that although height is the main factor determining the strength of vertical atmospheric electric field, wind also has significant effect on the strength of the atmospheric electric field in this area. Under fair-weather conditions, the absence of thin clouds has some influence on the measurement of atmospheric electric fields. When there are clouds, the speed of wind will indirectly affect the atmospheric electric fields by affecting the formation of clouds. In addition, there is an atmospheric electric field boundary layer in the Qaidam Basin susceptible to the underlying surface. The thickness of this boundary layer is more than 3 kilometers. The changes in the atmospheric electric field in the boundary layer and the distribution of the atmospheric electric field above 3600m were analyzed and fitted when there were no clouds under fair-weather conditions.
-
[1] SHUMILOV O I, KASATKINA E A, FRANK-KAMENETSKY A V. Effects of extraordinary solar cosmic ray events on variations in the atmospheric electric field at high latitudes[J]. Geomagn. Aeron., 2015, 55(5):650-657 [2] LI Renkang, CHEN Tao, LUO Jing, et al. Enhancement of high energy electron fluxes and the variation of the atmospheric electric field in the Antarctic region[J]. Chin. J. Space Sci., 2016, 36(1):40-48 [3] TACZA J, RAULIN J P, MENDONCA R R S, et al. Solar effects on the atmospheric electric field during 2010-2015 at low latitudes[J]. J. Geophys. Res. Atmos., 2018, 123(11):11970-11979 [4] CHEN Weimin. Principle of Lightning[M]. Beijing:Meteorological Press, 2006(陈渭民. 雷电学原理[M]. 北京:气象出版社, 2006) [5] LU Bingyuan. The Research on the Application of the Data of Atmospheric Electric Field in Lightning Warning[D]. Chengdu:University of Electronic Science and Technology, 2012(卢炳源. 大气电场数据在雷电预警中的应用研究[D]. 成都:电子科技大学, 2012) [6] ZHOU Bihua, JIANG Hui, LIU Haibo, et al. Relationship between aloft and ground atmospheric electric field[J]. Chin. J. Radio Sci., 2010, 25(1):20-25(周璧华, 姜慧, 刘海波, 等. 地面与空中大气电场的对应关系研究[J]. 电波科学学报, 2010, 25(1):20-25) [7] PULINETS S, OUZOUNOV D. The Possibility of Earthquake Forecasting[M]. Bristol:IOP Publishing Ltd, 2018 [8] HAO Jianguo, PAN Huaiwen, MAO Guomin, et al. Anomaly of quasi-static electric field and earthquake-exploration of a reliable earthquake precursor[J]. Seismol. Geomagn. Observ. Res., 2000, 21(4):3-166(郝建国, 潘怀文, 毛国敏, 等. 准静电场异常与地震——一种可靠短临地震前兆信息探索[J]. 地震地磁观测与研究, 2000, 21(4):3-166) [9] LI Yiding, ZHANG Liang, ZHANG Kun, et al. Research on the atmospheric electric field abnormality near the ground surface before "5.12" Wenchuan Earthquake[J]. Plat. Mountain Meteorol. Res., 2017, 37(1):49-53(李一丁, 张亮, 张琨, 等. "5.12"汶川地震前近地面大气电场异常研究[J]. 高原山地气象研究, 2017, 37(1):49-53) [10] NAMGALADZE A A. Earthquakes and global electrical circuit[J]. Russ. J. Phys. Chem.:B, 2013, 7(5):589-593 [11] FREUND F T, KULAHCI I G, CYR G, et al. Air ionization at rock surfaces and pre-earthquake signals[J]. J. Atmos. Sol.:Terr. Phys., 2009, 71(17/18):1824-1834 [12] LIPEROVSKY V A, MEISTER C V, LIPEROVSKAYA E V, et al. On the generation of electric field and infrared radiation in aerosol clouds due to radon emanation in the atmosphere before earthquakes[J]. Nat. Hazards Earth Syst. Sci., 2008, 8(5):1199-1205 [13] OMORI Y, NAGAHAMA H, KAWADA Y, et al. Preseismic alteration of atmospheric electrical conditions due to anomalous radon emanation[J]. Phys. Chem. Earth., 2009, 34(6/7):435-440 [14] OUZOUNOV D, PULINETS S, HATTORI K, et al. Pre-Earthquake Processes:a Multidisciplinary Approach to Earthquake Prediction Studies[M]. Washington:American Geophysical Union, 2018 [15] PULINETS S A, ALEKSEEV V A, LEGEN' KA A D, et al. Radon and metallic aerosols emanation before strong earthquakes and their role in atmosphere and ionosphere modification[J]. Adv. Space Res., 1997, 20(11):2173-2176 [16] SOROKIN V M, YASHCHENKO A K, HAYAKAWA M. Electric field perturbation caused by an increase in conductivity related to seismicity-induced atmospheric radioactivity growth[J]. Russ. J. Phys. Chem.:B, 2007, 1(6):644-648 [17] WU Han, CHEN Tao, LI Renkang, et al. Characteristics of the near-surface atmospheric electric field over the top of a flat mountain in Xilin Hot Volcano Geopark[J]. J. Space Sci., 2020, 40(3):357-363(吴晗, 陈涛, 李仁康, 等. 锡林浩特火山地质公园平顶山顶近地面大气电场变化的特征[J]. 空间科学学报, 2020, 40(3):357-363) [18] WU Ting, LÜ Weitao, LIU Xiaoyang, et al. Characteristics of atmospheric electric field near the Earth's surface under different weather conditions in Beijing[J]. J. Appl. Meteorol. Sci., 2009, 20(4):394-401(吴亭, 吕伟涛, 刘晓阳, 等. 北京地区不同天气条件下近地面大气电场特征[J]. 应用气象学报, 2009, 20(4):394-401) [19] (吴桐雯, 李江海, 杨梦莲. 柴达木盆地风成地貌类型与晚全新世古风况恢复[J]. 北京大学学报(自然科学版), 2018, 54(5):1021-1027WU Tongwen, LI Jianghai, YANG Menglian. The aeolian bedforms and the reconstruction of Late Holocene Wind Direction in Qaidam Basin[J]. Acta Sci. Natural. Univ. Pekinensis, 2018, 54(5):1021-1027 [20] (中国科学院地理与资源科学研究所. 柴达木盆地[OL]. 北京:中国科学院地理与资源科学研究所.[2020-2-29]. http://www.igsnrr.ac.cn/kxcb/dlyzykpyd/zgdl/zgdm/200704/t20070424_2154850.htmlInstitute of Geographic Sciences and Natural Resources Research. Qaidam Basin[OL]. Beijing:Institute of Geo-graphic Sciences And Natural Resources Research.[2020-2-29]. http://www.igsnrr.ac.cn/kxcb/dlyzykpyd/zgdl/zgdm/200704/t20070424_2154850.html [21] LUO Fushan, HE Yuhui, ZHANG Jian, et al. The new inverted electric field mill[J]. Chin. J. Space Sci., 2004, 24(6):470-474(罗福山, 何渝晖, 张健, 等. 新型倒装式旋转电场仪[J]. 空间科学学报, 2004, 24(6):470-474) [22] LUO Fushan, HE Yuhui, ZHANG Huawei, et al. Calibration method of electric field[J]. Chin. J. Space Sci., 2007, 27(3):223-226(罗福山, 何渝晖, 张华伟, 等. 电场的标定方法[J]. 空间科学学报, 2007, 27(3):223-226) [23] HARRISON R G. Fair weather criteria for atmospheric electricity measurements[J]. J. Atmos. Sol.:Terr. Phys., 2018, 179:239-250 [24] HARRISON R G. The Carnegie curve[J]. Surv. Geophys., 2013, 34(2):209-232 [25] CHALMERS J A. Atmospheric Electricity[M]. London:Pergamon Press, 1957:112-114 [26] REITER R. Phenomena in Atmospheric and Environmental Electricity[M]. Amsterdam:Elsevier, 1992 [27] HARRISON R G. An overview of Earth's global electric circuit and atmospheric conductivity[J]. Space Sci. Rev., 2008, 137:83-105 [28] ZHANG Yi, ZHANG Weibin, WANG Zhenhui, et al. Analysis of fair-weather atmospheric electric field over Eurasian Continent[J]. Trans. Atmos. Sci., 2015, 38(5):703-709(张袆, 张卫斌, 王振会, 等. 欧亚大陆晴天大气电场变化特征统计分析[J]. 大气科学学报, 2015, 38(5):703-709) [29] GISH O H. Evaluation and interpretation of the columnar resistance of the atmosphere[J]. Terr. Magn. Atoms. Elect., 1944, 49:159-168 [30] QIE Xiushu, ZHANG Qilin, YUAN Tie, et al. Lightning Physics[M]. Beijing:Science Press, 2013(郄秀书, 张其林, 袁铁, 等. 雷电物理学[M]. 北京:科学出版社, 2013) [31] STULL R B. An Introduction to Boundary Layer Meteorology[M]. Dordrecht/Boston/London:Kluwer Academic, 1988:666 -
-
计量
- 文章访问数: 795
- HTML全文浏览量: 170
- PDF下载量: 44
-
被引次数:
0(来源:Crossref)
0(来源:其他)