留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲激光诱发130nm体硅CMOS器件的单粒子闩锁效应

李赛 陈睿 韩建伟 上官士鹏 马英起

李赛, 陈睿, 韩建伟, 上官士鹏, 马英起. 脉冲激光诱发130nm体硅CMOS器件的单粒子闩锁效应[J]. 空间科学学报, 2021, 41(4): 648-653. doi: 10.11728/cjss2021.04.648
引用本文: 李赛, 陈睿, 韩建伟, 上官士鹏, 马英起. 脉冲激光诱发130nm体硅CMOS器件的单粒子闩锁效应[J]. 空间科学学报, 2021, 41(4): 648-653. doi: 10.11728/cjss2021.04.648
LI Sai, CHEN Rui, HAN Jianwei, SHANGGUAN Shipeng, MA Yingqi. Single Event Latch-up Effect of 130 nm Bulk Silicon CMOS Device Irradiated by Pulsed Laser[J]. Chinese Journal of Space Science, 2021, 41(4): 648-653. doi: 10.11728/cjss2021.04.648
Citation: LI Sai, CHEN Rui, HAN Jianwei, SHANGGUAN Shipeng, MA Yingqi. Single Event Latch-up Effect of 130 nm Bulk Silicon CMOS Device Irradiated by Pulsed Laser[J]. Chinese Journal of Space Science, 2021, 41(4): 648-653. doi: 10.11728/cjss2021.04.648

脉冲激光诱发130nm体硅CMOS器件的单粒子闩锁效应

doi: 10.11728/cjss2021.04.648 cstr: 32142.14.cjss2021.04.648
基金项目: 

国家自然科学青年基金项目资助(Y85032A020)

详细信息
    作者简介:
    • 李赛,E-mail:hebtulisai@163.com
  • 中图分类号: V216

Single Event Latch-up Effect of 130 nm Bulk Silicon CMOS Device Irradiated by Pulsed Laser

  • 摘要: 基于130nm体硅CMOS工艺,设计了具有不同阱/衬底接触与MOS管有源区间距、NMOS有源区与PMOS有源区间距的反相器链,利用脉冲激光试验开展了不同设计和不同工作电压下CMOS电路的单粒子闩锁效应敏感性研究.结果表明,随着阱/衬底接触与MOS管有源区的间距减小,以及NMOS与PMOS有源区间距的增大,电路抗SEL效应能力增强.此外,不同工作电压下电路的SEL效应规律表明,电压越大,反相器电路的SEL电流越大,且随着阱/衬底接触与MOS管有源区间距的减小以及NMOS与PMOS有源区间距的增大,电路出现SEL效应的开启电压增大.结合CMOS中寄生结构和单粒子闩锁效应触发机制,分析了相关因素影响电路单粒子闩锁效应敏感性的内在机制.

     

  • [1] HUTSON J M, SCHRIMPF R D, MASSENGILL L M, et al. The effects of scaling and well and substrate contact placement on single event latchup in bulk CMOS technology[C]//8th European Conference on Radiation and Its Effects on Components and Systems. Cap d'Agde:IEEE, 2005
    [2] CHEN Rui, YU Yongtao, DONG Gang, et al. Single event latch-up effect and mitigation technique in different sized CMOS devices[J]. High Power Laser Part. Beam., 2014, 26(7):074005-1-074005-6
    [3] YOUSSEF A Al, ARTOLA L, DUCRET S, et al. Investigation of electrical latchup and SEL mechanisms at low temperature for applications down to 50K[J]. IEEE Trans. Nucl. Sci., 2017, 64(8):2089-2097
    [4] QIN Junrui, CHEN Shuming, CHEN Jianjun, et al. Key factors of single event latch-up in 180nm CMOS technologies[J]. J. Natl. Univ. Defense Technol., 2011, 33(3):72
    [5] LI Yanfei, WU Jianwei, XIE Rubin, et al. Simulation and design of SEL for 0.18μm CMOS devices[J]. Electron. Packaging, 2017, 17(2):43-47
    [6] ARTOLA L, ROCHE N J H, HUBERT G, et al. Analysis of angular dependence of single-event latchup sensitivity for heavy-ion irradiations of 0.18-μm CMOS technology[J]. IEEE Trans. Nucl. Sci., 2015, 62(6):2539-2546
    [7] CHERYL J M, PAUL W M, RAYMOND L L, et al. Mechanisms and temperature dependence of single event latchup observed in a CMOS readout integrated circuit from 16-300K[J]. IEEE Trans. Nucl. Sci., 2010, 57(6):3078-3086
    [8] SCHWANK J R, SHANEYFELT M R, BAGGIO J, et al. Effects of angle of incidence on proton and neutron-induced single-event latchup[J]. IEEE Trans. Nucl. Sci., 2006, 53(6):3122-3131
    [9] ROCHE N J H, KHACHATRIAN A, BUCHNER S, et al. Application of a pulsed laser to identify a single-event latchup precursor[J]. IEEE Trans. Nucl. Sci., 2015, 62(6):2679-2686
    [10] HUANG Jianguo, HAN Jianwei. Calculation of equivalent LET for pulsed laser simulation of single event effect[J]. Sci. China Ser. G:Phys. Mech. Astron., 2004, 34(1):1-13
    [11] JOHNSTON A H. Charge generation and collection in P-N junctions excited with pulsed infrared lasers[J]. IEEE Trans. Nucl. Sci., 1993, 40(6):1694-1702
  • 加载中
计量
  • 文章访问数:  1260
  • HTML全文浏览量:  247
  • PDF下载量:  52
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2020-01-18
  • 修回日期:  2020-10-26
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回