Correlation Analysis between Magnetic Storms and Solar Extreme Ultraviolet Radiation during the 23rd Solar Cycle
-
摘要: 统计第23个太阳活动周内中等及以上强度(Dstmin<-50nT)的磁暴事件,线性拟合分析磁暴主相DDstmin和达到DDstmin前一个表征太阳极紫外辐射强度的F10.7之间的相关性.结果表明:随着太阳极紫外辐射增强,DDstmin<-50nT的磁暴出现的总数增多,在弱、中等和强太阳极紫外辐射条件下,其数量分别为56,84和85;随着太阳极紫外辐射增强,强磁暴(-200nT ≤ Dstmin<-100nT)和大磁暴(Dstmin<-200nT)发生的数量和相对发生率呈增长趋势,尤其是大磁暴数目(1,4,12)和相对发生率(1.79%,4.76%,14.12%)明显呈增长趋势;大磁暴(|Dstmin|)与太阳极紫外辐射(F10.7)之间存在中度正相关关系,其相关系数为0.532,并且主要体现在大磁暴(|Dstmin|)与强太阳极紫外辐射(F10.7)之间的中度正相关性,其相关系数为0.582.大磁暴与强太阳极紫外辐射之间的相关性可为空间天气预报提供参考依据.Abstract: The statistics of magnetic storms with moderate and higher intensity during the 23rd solar cycle are presented, and investigated the correlation by linear analysis between the intensity of the magnetic storm Dstmin and the solar Extreme Ultraviolet Radiation (EUV) intensity by using the observation of F10.7 index before the maximum of the storm main phase. Our statistical analysis results show that during the 23rd solar cycle:firstly, with an increase in solar EUV input, the number of moderate or higher intensity storms increases. There are 56 moderate or higher intensity storms under low solar extreme ultraviolet radiation activity, 85 storms under intermediate solar extreme ultraviolet radiation activity, and 80 events under high solar extreme ultraviolet radiation activity. Secondly, with increasing EUV input, the number and the probability of strong (-200nT ≤ Dstmin<-100nT) and big (Dstmin< -200nT) storms occurring also show an increasing trend, especially the number (1, 4, 12) and the probability (1.79%, 4.76%, 14.12%) of big storms. Thirdly, there is a moderate positive correlation of big storm (|Dstmin|) with F10.7, where the correlation coefficient is 0.532, and the correlation of big storm (|Dstmin|) with F10.7 is more significantly under high solar extreme ultraviolet radiation activity, where the coefficient is 0.582. Our results that there exists the moderate positive correlation of big storm with high solar extreme ultraviolet radiation activity can provide foundation information for space weather forecasting.
-
[1] LATHUILLERE C, MENVIELLE M, LILENSTEN J, et al. From the Sun's atmosphere to the Earth's atmosphere:an overview of scientific models available for space weather developments[J]. Ann. Geophys., 2002, 20:1081-1104 [2] LEAN J L, WOODS T N, EPARVIER F, et al. Solar extreme ultraviolet irradiance:present, past, and future[J]. J. Geophys. Res. Space Phys., 2011, 116(A1).DOI:10. 1029/2010JA015901 [3] LIN Y C, CHU Y H. Model simulations of ion and electron density profiles in ionospheric E and F regions:ionospheric plasma density simulation[J]. J. Geophys. Res.:Space Phys., 2017, 122(2).DOI: 10.1002/2016JA022855 [4] QIAN L, BURNS A G, CHAMBERLIN P, et al. Flare location on the solar disk:modeling the thermosphere and ionosphere response[J]. J. Geophys. Res. Space Phys., 2010, 115(A9).DOI: 10.1029/2009JA015225 [5] GONZALEZ W D, JOSELYN J A, KAMIDE Y, et al. What is a geomagnetic storm[J]. J. Geophys. Res., 1994, 99(A4):5771 [6] DAGLIS I A. The storm-time ring current[J]. Space Sci. Rev., 2001, 98(3/4):343-363 [7] KRONBERG E A, ABDALLA A M, DANDOURAS L, et al. Circulation of heavy ions and their dynamical effects in the magnetosphere:recent observations and models[J]. Space Sci. Rev., 2014, 184(1/2/3/4):173-235 [8] DAGLIS I A. The role of magnetosphere-ionosphere coupling in magnetic storm dynamics[C]//American Geophysical Union. Washington DC:AGU, 1997 [9] KAMIDE Y, MALTSEV Y P. Geomagnetic Storms[M]. New York:Springer Berlin Heidelberg, 2007:355-374 [10] NOSÉ M, TAKAHASHI K, OHTANI S, et al. Dynamics of ions of ionospheric origin during magnetic storms:their acceleration mechanism and transport path to ring current[J]. Geophys. Monog. Ser., 2013, 155:61-71 [11] SHELLEY E G, JOHNSON R G, SHARP R D. Satellite observations of energetic heavy ions during a geomagnetic storm[J]. J. Geophys. Res., 1972, 77(31):6104-6110 [12] DAGLIS I A. Ring current dynamics[J]. Space Sci. Rev., 2006, 124(1/2/3/4):183-202 [13] HULTQVIST B, ØIEROSET M, PASCHMANN G, et al. Magnetospheric Plasma Sources and Losses[M]. Dordrecht:Springer, 1999:1-5 [14] ADLER N O D, ANA G ELÍAS, MANZANO J R. Solar cycle length variation:its relation with ionospheric parameters[J]. J. Atmos. Sol.:Terr. Phys., 1997, 59(2):159-162 [15] LIU L, WAN W, NING B, et al. Solar activity variations of the ionospheric peak electron density[J]. J. Geophys. Res. Atmos., 2006, 111(A8).DOI: 10.1029/2006ja011598 [16] CULLY C M. Akebono/Suprathermal Mass Spectrometer observations of low-energy ion outflow:dependence on magnetic activity and solar wind conditions[J]. J. Geophys. Res., 2003, 108(A2).DOI: 10.1029/2001ja009200 [17] SLAPAK R, NILSSON H. The oxygen ion circulation in the outer terrestrial magnetosphere and its dependence on geomagnetic activity[J]. Geophys. Res. Lett., 2018, 45(23):12669-12676 [18] TAPPING K F. The 10.7cm solar radio flux (F10.7)[J]. Space Weather, 2013, 11(7):394-406 [19] YAU A W, PETERSON W K, SHELLEY E G. Quantitative parametrization of energetic ionospheric ion outflow[J]. Geophys. Monog. Ser., 1988, 44:211-217 [20] LIU L, WAN W, YUE X, et al. The dependence of plasma density in the topside ionosphere on the solar activity level[J]. Ann. Geophys., 2007, 25(6):1337-1343 [21] KISTLER L M, MOUIKIS C G. The inner magnetosphere ion composition and local time distribution over a solar cycle[J]. J. Geophys. Res.:Space Phys., 2016, 121(3):2009-2032 [22] MOORE T E, CHANDLER M O, FOK M C, et al. Ring currents and internal plasma sources[J]. Space Sci. Rev., 2001, 95(1-2):555-568 [23] PETERSON W K, ANDERSSON L, CALLAHAN B, et al. Geomagnetic activity dependence of O+ in transit from the ionosphere[J]. J. Atmos. Sol.:Terr. Phys., 2009, 71(16):1623-1629 [24] VEIBELL V, WEIGEL R S, DENTON R E. Solar wind, F10.7, and geomagnetic activity relationship to the equatorial plasma mass density at geosynchronous orbit[J]. Space Weather:Int. J. Res. Appl., 2016, 14(12):1095-1106 [25] ZHAO K, JIANG Y, DING L G, et al. Statistical analysis of outflow ionospheric O+ on the declining phase of solar cycle 23 using fast observations[J]. Planet. Space Sci., 2014, 101:170-180 [26] CATTELL C A, NGUYEN T, TEMERIN M, et al. Effects of Solar Cycle on Auroral Particle Acceleration[M]//Auroral Plasma Dynamics. Washington DC:American Geophysical Union (AGU), 2013 [27] FU Shuai, JIANG Yong, ZHAO Kai, et al. Solar activity dependence of ionosphere ion upflow in the polar topside[J]. Chin. J. Space Sci., 2017, 37(1):28-38(傅帅, 蒋勇, 赵凯, 等. 极区顶部电离层离子上行的太阳活动依赖性研究[J]. 空间科学学报, 2017, 37(1):28-38) [28] ZHOU Kangjun, CAI Hongtao, LI Ying, et al. Geomagnetic activity dependences of high-latitude dayside ionospheric ion upflows[J]. Chin. J. Geophys., 2018, 61(2):423-436(周康俊, 蔡红涛, 李影, 等. 高纬日侧电离层离子上行的地磁活动依赖性研究[J]. 地球物理学报, 2018, 61(2):423-436) [29] GREENSPAN M E, HAMILTON D C. Relative contributions of H+ and O+ to the ring current energy near magnetic storm maximum[J]. J. Geophys. Res.:Space Phys., 2002, 107(A4).DOI: 10.1029/2001ja000155 [30] DUAN S, DAI L, WANG C, et al. Oxygen Ions O+ Energized by Kinetic Alfvén eigenmode during dipolarizations of intense substorms[J]. J. Geophys. Res. Space Phys., 2017, 122(11):11256-11273 [31] FOK M C, MOORE T E, BRANDT P C, et al. Impulsive enhancements of oxygen ions during substorms[J]. J. Geophys. Res. Atmos., 2006, 111(A10).DOI: 10.1029/2006-ja011839 [32] FU Suiyuan, PU Zuyin, ZONG Qiugang, et al. Ion Composition variations in the ring current during intense magnetic storms and their relationship with evolution of storms[J]. Chin. J. Geophys., 2001, 44(1):1-11(傅绥燕, 濮祖荫, 宗秋刚, 等. 大磁暴中环电流离子成分的变化及其与磁暴演化的关系[J]. 地球物理学报, 2001, 44(1):1-11) [33] FU S Y, ZONG Q G, WILKEN B, et al. Temporal and spatial variation of the ion composition in the ring current[J]. Space Sci. Rev., 2001, 95(1-2):539-554 [34] MAGGIOLO R. Spatial variation in the plasma sheet composition:dependence on geomagnetic and solar activity[J]. J. Geophys. Res.:Space Phys., 2014, 119(4):2836-2857 [35] OHTANI S, NOSÉ M, CHRISTON S P, et al. Energetic O+ and H+ ions in the plasma sheet:implications for the transport of ionospheric ions[J]. J. Geophys. Res.:Space Phys., 2011, 116(A10):A10211 [36] HARRA L K, CARGILL P J. Coronal Mass Ejection[M]. New York:Springer Berlin Heidelberg, 2007 [37] ST CYR O C, HOWARD R A, SHEELEY N R, et al. Properties of coronal mass ejections:SOHO LASCO observations from January 1996 to June 1998[J]. J. Geophys. Res.:Space Phys., 2000, 105(A8):18169-18185 [38] YASHIRO S. A catalog of white light coronal mass ejections observed by the SOHO spacecraft[J]. J. Geophys. Res.:Space Phys., 2004, 109(A7):A07105 [39] BOROVSKY J E, DENTON M H. Differences between CME-driven storms and CIR-driven storms[J]. J. Geophys. Res.:Space Phys., 2006, 111(A7).DOI: 10.1029/2005ja011447 [40] LIU J, LIU L B, ZHAO B Q, et al. Response of the topside ionosphere to recurrent geomagnetic activity[J]. J. Geophys. Res.:Space Phys., 2010, 115.DOI: 10.1029/2010JA015810 -
-
计量
- 文章访问数: 753
- HTML全文浏览量: 98
- PDF下载量: 43
-
被引次数:
0(来源:Crossref)
0(来源:其他)