留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第23太阳活动周热层大气密度对太阳辐射指数F10.7响应的模拟研究

唐成 李嘉巍 张效信 王文斌 于超

唐成, 李嘉巍, 张效信, 王文斌, 于超. 第23太阳活动周热层大气密度对太阳辐射指数F10.7响应的模拟研究[J]. 空间科学学报, 2021, 41(5): 704-714. doi: 10.11728/cjss2021.05.704
引用本文: 唐成, 李嘉巍, 张效信, 王文斌, 于超. 第23太阳活动周热层大气密度对太阳辐射指数F10.7响应的模拟研究[J]. 空间科学学报, 2021, 41(5): 704-714. doi: 10.11728/cjss2021.05.704
TANG Cheng, LI Jiawei, ZHANG Xiaoxin, WANG Wenbin, YU Chao. TIEGCM Numerical Study on the Thermospheric Density Response to Solar F10.7 Radio Flux Variations during the 23rd Solar Cycle[J]. Journal of Space Science, 2021, 41(5): 704-714. doi: 10.11728/cjss2021.05.704
Citation: TANG Cheng, LI Jiawei, ZHANG Xiaoxin, WANG Wenbin, YU Chao. TIEGCM Numerical Study on the Thermospheric Density Response to Solar F10.7 Radio Flux Variations during the 23rd Solar Cycle[J]. Journal of Space Science, 2021, 41(5): 704-714. doi: 10.11728/cjss2021.05.704

第23太阳活动周热层大气密度对太阳辐射指数F10.7响应的模拟研究

doi: 10.11728/cjss2021.05.704
基金项目: 

国家自然科学基金项目(41931073,41774152)和中国科学院空间科学战略性先导科技专项(XDA15350203)共同资助

详细信息
    作者简介:

    李嘉巍,E-mail:lijw@cma.gov.cn

  • 中图分类号: P353

TIEGCM Numerical Study on the Thermospheric Density Response to Solar F10.7 Radio Flux Variations during the 23rd Solar Cycle

  • 摘要: 利用NCAR-TIEGCM计算了第23太阳活动周期间(1996—2008年)400km高度上的大气密度,并统计分析大气密度对太阳辐射指数FF10.7的响应.结果表明,在第23太阳活动周内,大气密度的变化趋势与太阳辐射指数FF10.7的变化趋势基本一致,但是大气密度在不同年份、不同月份对太阳辐射指数FF10.7的响应存在差异.第23太阳活动周内太阳辐射极大值和极小值之比大于4,而大气密度的极大值与极小值之比则大于10.太阳辐射低年的年内大气密度变化不到2倍,而太阳辐射高年的年内大气密度变化可达2倍甚至3倍.大气密度与FF10.7指数在北半球高纬的相关系数比南半球高纬的相关系数大.在低纬地区,太阳辐射高年大气密度与FF10.7指数的相关系数比低年的大.不同纬度上,大气密度与太阳辐射指数FF10.7的27天变化值之间的相关系数都大于其与81天变化值之间的相关系数.

     

  • [1] HEDIN A E, MAYR H G. Solar EUV induced variations in the thermosphere[J]. J. Geophys. Res., 1987, 92(D1):869-875
    [2] JACCHIA L G. Two atmosphere effects in the orbital acceleration of artificial satellites[J]. Nature, 1959, 183:526-527
    [3] LIU L, WAN W, NING B. Statistical modeling of ionospheric f0F2 over Wuhan[J]. Radio Sci., 2004, 39:DOI: 10.1029/2003RS003005
    [4] LIU L, WAN W, NING B, et al. Solar activity variations of the ionospheric peak electron density[J]. J. Geophys. Res., 2006, 111:DOI: 10.1029/2006JA011598
    [5] BOWMAN B R, TOBISKA W K. Improvements in modeling thermospheric densities using new EUV and FUV solar indices[J]. Adv. Astron. Sci., 2006, 124:2183-2202
    [6] TOBISKA W K, BOUWER S D, BOWMAN B R. The development of new solar indices for use in thermospheric density modeling[J]. J. Atmos. Sol.:Terr. Phys., 2008, 70:803-819
    [7] EMMERT J T. Thermospheric mass density:a review[J]. Adv. Space Res., 2015, 56(5):773-824
    [8] GUO J P, WAN W X, FORBES J M, et al. Effects of solar variability on thermosphere density from CHAMP accelerometer data[J]. J. Geophys. Res., 2007, 112:DOI: 10.1029/2007JA012409
    [9] SOLOMON S C, QIAN L, DIDKOVSKY L V, et al. Causes of low thermospheric density during the 2007-2009 solar minimum[J]. J. Geophys. Res., 2011, 116:DOI: 10.1029/2011JA016508
    [10] XU J Y, WANG W B, ZHANG S R, et al. Multiday thermospheric density oscillations associated with variations in solar radiation and geomagnetic activity[J]. J. Geophys. Res., 2014, 120:DOI: 10.1002/2014JA0208
    [11] QIAN L, SOLOMON S C, KANE T J. Seasonal variation of thermospheric density and composition[J]. J. Geophys. Res., 2008, 114:DOI: 10.1029/2008JA013643
    [12] LEI J, DOU X, BURNS A, et al. Annual asymmetry in thermospheric density:observation and simulations[J]. J. Geophys. Res., 2013, 118:DOI: 10.1002/jgra.50253
    [13] WU Yuan, LI Jiawei, ZHANG Xiaoxin, et al. Comparison and analysis of the thermospheric density between TIEGCM and CHAMP during a sever geomagnetic storm[J]. Chin. J. Space Sci., 2014, 34(1):81-88(吴媛, 李嘉巍, 张效信, 等. 强磁暴期间TIEGCM模式与CHAMP卫星热层大气密度的比较分析[J]. 空间科学学报, 2014, 34(1):81-88)
    [14] LI Jiawei, WU Yuan, ZHANG Xiaoxin, et al. Statistical analysis of thermospheric density changes seen by TIEGCM and CHAMP data during major geomagnetic storms[J]. Chin. J. Geophys., 2015, 58(3):709-720(李嘉巍, 吴媛, 张效信, 等. 大磁暴期间TIEGCM模式和CHAMP卫星热层大气密度扰动特性的统计研究[J]. 地球物理学报, 2015, 58(3):709-720)
    [15] ROBEL R G, RIDLEY E C, RICHMOND A D, et al. A coupled thermosphere/ionosphere general circulation model[J]. Geophys. Res. Lett., 1988, 15:1325-1328
    [16] RICHMOND A D, RIDLEY E C, ROBEL R G. A thermosphere/ionosphere general circulation model with coupled electrodynamics[J]. Geophys. Res. Lett., 1992, 19:601-604
    [17] QIAN L, BURNS A G, EMERY B A, et al. The NCAR-TIEGCM:a community model of the coupled thermosphere/ionosphere system[J]. Geophys. Monog. Ser., 2014, 201:DOI: 10.1002/9781118704417.ch7
    [18] GUO J P, WAN W X, FORBES J M, et al. Interannual and latitudinal variability of the thermosphere density annual harmonics[J]. J. Geophys. Res., 2008, 113. DOI: 10.1029/2008JA013056
    [19] LAUNDAL K M, CNOSSEN I, MILAN S E, et al. North-South asymmetries in Earth's magnetic field effects on high-latitude geospace[J]. Space Sci. Rev., 2017, 206:225-257
  • 加载中
计量
  • 文章访问数:  145
  • HTML全文浏览量:  13
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-01
  • 修回日期:  2021-01-29
  • 刊出日期:  2021-09-15

目录

    /

    返回文章
    返回